1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
"""
Algorithms to characterize the number of triangles in a graph.
"""
__author__ = """Aric Hagberg (hagberg@lanl.gov)\nPieter Swart (swart@lanl.gov)\nDan Schult (dschult@colgate.edu)"""
# Copyright (C) 2004-2008 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
__all__= ['triangles', 'average_clustering', 'clustering', 'transitivity']
import networkx as nx
from networkx import NetworkXError
def triangles(G,nbunch=None):
"""Compute the number of triangles.
Finds the number of triangles that include a node as one of the vertices.
Parameters
----------
G : graph
A networkx graph
nbunch : container of nodes, optional
Compute triangles for nodes in nbunch. The default is all nodes in G.
Returns
-------
out : dictionary
Number of trianges keyed by node label.
Examples
--------
>>> G=nx.complete_graph(5)
>>> print nx.triangles(G,0)
6
>>> print nx.triangles(G)
{0: 6, 1: 6, 2: 6, 3: 6, 4: 6}
>>> print nx.triangles(G,(0,1)).values()
[6, 6]
Notes
-----
When computing triangles for the entire graph
each triangle is counted three times, once at each node.
Self loops are ignored.
"""
if G.is_directed():
raise NetworkXError("triangles() is not defined for directed graphs.")
if nbunch in G:
return _triangles_and_degree_iter(G,nbunch).next()[2]/2 # return single value
return dict( (v,t/2) for v,d,t in _triangles_and_degree_iter(G,nbunch))
def _triangles_and_degree_iter(G,nbunch=None):
""" Return an iterator of (node, degree, triangles).
This double counts triangles so you may want to divide by 2.
See degree() and triangles() for definitions and details.
"""
if G.is_multigraph():
raise NetworkXError("Not defined for multigraphs.")
if nbunch is None:
nodes_nbrs = G.adj.iteritems()
else:
nodes_nbrs= ( (n,G[n]) for n in G.nbunch_iter(nbunch) )
for v,v_nbrs in nodes_nbrs:
vs=set(v_nbrs)
if v in vs:
vs.remove(v)
ntriangles=0
for w in vs:
ws=set(G[w])
if w in ws:
ws.remove(w)
ntriangles+=len(vs.intersection(ws))
yield (v,len(vs),ntriangles)
def average_clustering(G):
"""Compute average clustering coefficient.
A clustering coefficient for the whole graph is the average,
.. math::
C = \\frac{1}{n}\\sum_{v \in G} c_v,
where :math:`n` is the number of nodes in :math:`G`.
Parameters
----------
G : graph
A networkx graph
Returns
-------
out : float
Average clustering
Examples
--------
>>> G=nx.complete_graph(5)
>>> print nx.average_clustering(G)
1.0
Notes
-----
This is a space saving routine; it might be faster
to use clustering to get a list and then take the average.
Self loops are ignored.
"""
order=G.order()
s=sum(clustering(G).values())
return s/float(order)
def clustering(G,nbunch=None,weights=False):
""" Compute the clustering coefficient for nodes.
For each node find the fraction of possible triangles that exist,
.. math::
c_v = \\frac{2 T(v)}{deg(v)(deg(v)-1)}
where :math:`T(v)` is the number of triangles through node :math:`v`.
Parameters
----------
G : graph
A networkx graph
nbunch : container of nodes, optional
Limit to specified nodes. Default is entire graph.
weights : bool, optional
If True return fraction of connected triples as dictionary
Returns
-------
out : float, dictionary or tuple of dictionaries
Clustering coefficient at specified nodes
Examples
--------
>>> G=nx.complete_graph(5)
>>> print nx.clustering(G,0)
1.0
>>> print nx.clustering(G)
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}
Notes
-----
The weights are the fraction of connected triples in the graph
which include the keyed node. Ths is useful for computing
transitivity.
Self loops are ignored.
"""
if G.is_directed():
raise NetworkXError("Clustering algorithms are not defined for directed graphs.")
if weights:
clusterc={}
weights={}
for v,d,t in _triangles_and_degree_iter(G,nbunch):
weights[v]=float(d*(d-1))
if t==0:
clusterc[v]=0.0
else:
clusterc[v]=t/float(d*(d-1))
scale=1./sum(weights.itervalues())
for v,w in weights.iteritems():
weights[v]=w*scale
return clusterc,weights
clusterc={}
for v,d,t in _triangles_and_degree_iter(G,nbunch):
if t==0:
clusterc[v]=0.0
else:
clusterc[v]=t/float(d*(d-1))
if nbunch in G:
return clusterc.values()[0] # return single value
return clusterc
def transitivity(G):
"""Compute transitivity.
Finds the fraction of all possible triangles which are in fact triangles.
Possible triangles are identified by the number of "triads" (two edges
with a shared vertex).
T = 3*triangles/triads
Parameters
----------
G : graph
A networkx graph
Returns
-------
out : float
Transitivity
Examples
--------
>>> G=nx.complete_graph(5)
>>> print nx.transitivity(G)
1.0
"""
triangles=0 # 6 times number of triangles
contri=0 # 2 times number of connected triples
for v,d,t in _triangles_and_degree_iter(G):
contri += d*(d-1)
triangles += t
if triangles==0: # we had no triangles or possible triangles
return 0.0
else:
return triangles/float(contri)
|