File: test_hits.py

package info (click to toggle)
python-networkx 1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 2,780 kB
  • ctags: 1,910
  • sloc: python: 29,050; makefile: 126
file content (56 lines) | stat: -rw-r--r-- 1,453 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/env python
from nose.tools import *
from nose import SkipTest
import networkx

# Example from
# A. Langville and C. Meyer, "A survey of eigenvector methods of web
# information retrieval."  http://citeseer.ist.psu.edu/713792.html


class TestHITS:

    def setUp(self):
        
        G=networkx.DiGraph()

        edges=[(1,3),(1,5),\
           (2,1),\
           (3,5),\
           (5,4),(5,3),\
           (6,5)]
           
        G.add_edges_from(edges,weight=1)
        self.G=G
        self.G.a=dict(zip(G,[0.000000, 0.000000, 0.366025,
                             0.133975, 0.500000, 0.000000]))
        self.G.h=dict(zip(G,[ 0.366025, 0.000000, 0.211325, 
                              0.000000, 0.211325, 0.211325]))


    def test_hits(self):
        G=self.G
        h,a=networkx.hits(G,tol=1.e-08)
        for n in G:
            assert_almost_equal(h[n],G.h[n],places=4)
        for n in G:
            assert_almost_equal(a[n],G.a[n],places=4)

    def test_hits_numpy(self):
        G=self.G
        h,a=networkx.hits_numpy(G)
        for n in G:
            assert_almost_equal(h[n],G.h[n],places=4)
        for n in G:
            assert_almost_equal(a[n],G.a[n],places=4)


    def test_hits_scipy(self):
        G=self.G
        h,a=networkx.hits_scipy(G,tol=1.e-08)
        for n in G:
            assert_almost_equal(h[n],G.h[n],places=4)
        for n in G:
            assert_almost_equal(a[n],G.a[n],places=4)