1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
"""
Mixing matrices and assortativity coefficients.
"""
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""
__all__ = ['degree_assortativity',
'attribute_assortativity',
'numeric_assortativity',
'neighbor_connectivity',
'attribute_mixing_matrix',
'degree_mixing_matrix',
'degree_pearsonr',
'degree_mixing_dict',
'attribute_mixing_dict',
]
import networkx as nx
def degree_assortativity(G):
"""Compute degree assortativity of graph.
Assortativity measures the similarity of connections
in the graph with respect to the node degree.
Parameters
----------
G : NetworkX graph
Returns
-------
r : float
Assortativity of graph by degree.
Examples
--------
>>> G=nx.path_graph(4)
>>> r=nx.degree_assortativity(G)
>>> print "%3.1f"%r
-0.5
See Also
--------
attribute_assortativity
numeric_assortativity
neighbor_connectivity
degree_mixing_dict
degree_mixing_matrix
Notes
-----
This computes Eq. (21) in Ref. [1]_ , where e is the joint
probability distribution (mixing matrix) of the degrees. If G is
directed than the matrix e is the joint probability of out-degree
and in-degree.
References
----------
.. [1] M. E. J. Newman, Mixing patterns in networks,
Physical Review E, 67 026126, 2003
"""
return numeric_assortativity_coefficient(degree_mixing_matrix(G))
def degree_pearsonr(G):
"""Compute degree assortativity of graph.
Assortativity measures the similarity of connections
in the graph with respect to the node degree.
Parameters
----------
G : NetworkX graph
Returns
-------
r : float
Assortativity of graph by degree.
Examples
--------
>>> G=nx.path_graph(4)
>>> r=nx.degree_pearsonr(G) # r=-0.5
Notes
-----
This calls scipy.stats.pearsonr().
References
----------
.. [1] M. E. J. Newman, Mixing patterns in networks
Physical Review E, 67 026126, 2003
"""
from itertools import izip
try:
import scipy.stats as stats
except ImportError:
raise ImportError, \
"Assortativity requires SciPy: http://scipy.org/ "
xy=node_degree_xy(G)
x,y=izip(*xy)
return stats.pearsonr(x,y)[0]
def attribute_mixing_dict(G,attribute,normalized=False):
"""Return dictionary representation of mixing matrix for attribute.
Parameters
----------
G : graph
NetworkX graph object.
attribute : string
Node attribute key.
normalized : bool (default=False)
Return counts if False or probabilities if True.
Examples
--------
>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],color='red')
>>> G.add_nodes_from([2,3],color='blue')
>>> G.add_edge(1,3)
>>> d=nx.attribute_mixing_dict(G,'color')
>>> print d['red']['blue']
1
>>> print d['blue']['red'] # d symmetric for undirected graphs
1
Returns
-------
d : dictionary
Counts or joint probability of occurrence of attribute pairs.
"""
xy_iter=node_attribute_xy(G,attribute)
return mixing_dict(xy_iter,normalized=normalized)
def attribute_mixing_matrix(G,attribute,mapping=None,normalized=True):
"""Return mixing matrix for attribute.
Parameters
----------
G : graph
NetworkX graph object.
attribute : string
Node attribute key.
mapping : dictionary, optional
Mapping from node attribute to integer index in matrix.
If not specified, an arbitrary ordering will be used.
normalized : bool (default=False)
Return counts if False or probabilities if True.
Returns
-------
m: numpy array
Counts or joint probability of occurrence of attribute pairs.
"""
d=attribute_mixing_dict(G,attribute)
a=dict_to_numpy_array(d,mapping=mapping)
if normalized:
a=a/a.sum()
return a
def attribute_assortativity(G,attribute):
"""Compute assortativity for node attributes.
Assortativity measures the similarity of connections
in the graph with respect to the given attribute.
Parameters
----------
G : NetworkX graph
attribute : string
Node attribute key
Returns
-------
a: float
Assortativity of given attribute
Examples
--------
>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],color='red')
>>> G.add_nodes_from([2,3],color='blue')
>>> G.add_edges_from([(0,1),(2,3)])
>>> print nx.attribute_assortativity(G,'color')
1.0
Notes
-----
This computes Eq. (2) in Ref. [1]_ , (trace(e)-sum(e))/(1-sum(e)),
where e is the joint probability distribution (mixing matrix)
of the specified attribute.
References
----------
.. [1] M. E. J. Newman, Mixing patterns in networks,
Physical Review E, 67 026126, 2003
"""
a=attribute_mixing_matrix(G,attribute)
return attribute_assortativity_coefficient(a)
def numeric_assortativity(G,attribute):
"""Compute assortativity for numerical node attributes.
Assortativity measures the similarity of connections
in the graph with respect to the given numeric attribute.
Parameters
----------
G : NetworkX graph
attribute : string
Node attribute key
Returns
-------
a: float
Assortativity of given attribute
Examples
--------
>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],size=2)
>>> G.add_nodes_from([2,3],size=3)
>>> G.add_edges_from([(0,1),(2,3)])
>>> print nx.numeric_assortativity(G,'size')
1.0
Notes
-----
This computes Eq. (21) in Ref. [1]_ ,
where e is the joint probability distribution (mixing matrix)
of the specified attribute.
References
----------
.. [1] M. E. J. Newman, Mixing patterns in networks
Physical Review E, 67 026126, 2003
"""
a=numeric_mixing_matrix(G,attribute)
return numeric_assortativity_coefficient(a)
def attribute_assortativity_coefficient(e):
"""Compute assortativity for attribute matrix e.
Parameters
----------
e : numpy array or matrix
Attribute mixing matrix.
Notes
-----
This computes Eq. (2) in Ref. [1]_ , (trace(e)-sum(e))/(1-sum(e)),
where e is the joint probability distribution (mixing matrix)
of the specified attribute.
References
----------
.. [1] M. E. J. Newman, Mixing patterns in networks,
Physical Review E, 67 026126, 2003
"""
try:
import numpy
except ImportError:
raise ImportError, \
"attribute_assortativity requires NumPy: http://scipy.org/ "
if e.sum() != 1.0:
e=e/float(e.sum())
e=numpy.asmatrix(e)
s=(e*e).sum()
t=e.trace()
r=(t-s)/(1-s)
rmin=-s/(1-s)
return float(r)
def degree_mixing_dict(G,normalized=False):
"""Return dictionary representation of mixing matrix for degree.
Parameters
----------
G : graph
NetworkX graph object.
normalized : bool (default=False)
Return counts if False or probabilities if True.
Returns
-------
d: dictionary
Counts or joint probability of occurrence of degree pairs.
"""
xy_iter=node_degree_xy(G)
return mixing_dict(xy_iter,normalized=normalized)
def numeric_mixing_matrix(G,attribute,normalized=True):
"""Return numeric mixing matrix for attribute.
Parameters
----------
G : graph
NetworkX graph object.
attribute : string
Node attribute key.
normalized : bool (default=False)
Return counts if False or probabilities if True.
Returns
-------
m: numpy array
Counts, or joint, probability of occurrence of node attribute pairs.
"""
d=attribute_mixing_dict(G,attribute)
s=set(d.keys())
for k,v in d.items():
s.update(v.keys())
m=max(s)
mapping=dict(zip(range(m+1),range(m+1)))
a=dict_to_numpy_array(d,mapping=mapping)
if normalized:
a=a/a.sum()
return a
def degree_mixing_matrix(G,normalized=True):
"""Return mixing matrix for attribute.
Parameters
----------
G : graph
NetworkX graph object.
normalized : bool (default=False)
Return counts if False or probabilities if True.
Returns
-------
m: numpy array
Counts, or joint probability, of occurrence of node degree.
"""
d=degree_mixing_dict(G)
s=set(d.keys())
for k,v in d.items():
s.update(v.keys())
m=max(s)
mapping=dict(zip(range(m+1),range(m+1)))
a=dict_to_numpy_array(d,mapping=mapping)
if normalized:
a=a/a.sum()
return a
def neighborhood_connectivity_iter(G):
"""Iterator over neighborhood connectivity that produces
degree,average_degree tuples.
"""
d=degree_mixing_dict(G,normalized=True)
for k in d:
yield k,sum(j*float(v) for j,v in d[k].items())
def neighbor_connectivity(G):
"""Compute neighbor connectivity of graph.
The neighbor connectivity is the average nearest neighbor degree of
a node of degree k.
Parameters
----------
G : NetworkX graph
Returns
-------
d: dictionary
A dictionary keyed by degree k with the value of average neighbor degree.
Examples
--------
>>> G=nx.cycle_graph(4)
>>> nx.neighbor_connectivity(G)
{2: 2.0}
>>> G=nx.complete_graph(4)
>>> nx.neighbor_connectivity(G)
{3: 3.0}
"""
return dict(neighborhood_connectivity_iter(G))
def numeric_assortativity_coefficient(e):
try:
import numpy
except ImportError:
raise ImportError, \
"numeric_assortativity_coefficient requires NumPy: http://scipy.org/ "
if e.sum() != 1.0:
e=e/float(e.sum())
nx,ny=e.shape # nx=ny
x=numpy.arange(nx)
y=numpy.arange(ny)
a=e.sum(axis=0)
b=e.sum(axis=1)
vara=(a*x**2).sum()-((a*x).sum())**2
varb=(b*x**2).sum()-((b*x).sum())**2
xy=numpy.outer(x,y)
ab=numpy.outer(a,b)
return (xy*(e-ab)).sum()/numpy.sqrt(vara*varb)
def mixing_dict(xy,normalized=False):
"""Return a dictionary representation of mixing matrix.
Parameters
----------
xy : list or container of two-tuples
Pairs of (x,y) items.
attribute : string
Node attribute key
normalized : bool (default=False)
Return counts if False or probabilities if True.
Returns
-------
d: dictionary
Counts or Joint probability of occurrence of values in xy.
"""
d={}
psum=0.0
for x,y in xy:
if x not in d:
d[x]={}
if y not in d:
d[y]={}
v=d[x].setdefault(y,0)
d[x][y]=v+1
psum+=1
if normalized:
for k,jdict in d.items():
for j in jdict:
jdict[j]/=psum
return d
def dict_to_numpy_array(d,mapping=None):
"""Convert a dictionary to numpy array with optional mapping."""
try:
import numpy
except ImportError:
raise ImportError, \
"dict_to_numpy_array requires numpy : http://scipy.org/ "
if mapping is None:
s=set(d.keys())
for k,v in d.items():
s.update(v.keys())
mapping=dict(zip(s,range(len(s))))
n=len(mapping)
a = numpy.zeros((n, n))
for k1, row in d.iteritems():
for k2, value in row.iteritems():
i=mapping[k1]
j=mapping[k2]
a[i,j] = value
return a
def node_attribute_xy(G,attribute):
"""Return iterator of node attribute pairs for all edges in G.
For undirected graphs each edge is produced twice, once for each
representation u-v and v-u, with the exception of self loop edges
that only appear once.
"""
node=G.node
for u,nbrsdict in G.adjacency_iter():
uattr=node[u].get(attribute,None)
if G.is_multigraph():
for v,keys in nbrsdict.iteritems():
vattr=node[v].get(attribute,None)
for k,d in keys.iteritems():
yield (uattr,vattr)
else:
for v,eattr in nbrsdict.iteritems():
vattr=node[v].get(attribute,None)
yield (uattr,vattr)
def node_degree_xy(G):
"""Return iterator of degree-degree pairs for all edges in G.
For undirected graphs each edge is produced twice, once for each
representation u-v and v-u, with the exception of self loop edges
that only appear once.
For directed graphs this produces out-degree,in-degree pairs
"""
if G.is_directed():
in_degree=G.in_degree
out_degree=G.out_degree
else:
in_degree=G.degree
out_degree=G.degree
for u,nbrsdict in G.adjacency_iter():
degu=out_degree(u)
if G.is_multigraph():
for v,keys in nbrsdict.iteritems():
degv=in_degree(v)
for k,d in keys.iteritems():
yield degu,degv
else:
for v,eattr in nbrsdict.iteritems():
degv=in_degree(v)
yield degu,degv
|