File: unweighted.py

package info (click to toggle)
python-networkx 1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 2,780 kB
  • ctags: 1,910
  • sloc: python: 29,050; makefile: 126
file content (490 lines) | stat: -rw-r--r-- 13,533 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# -*- coding: utf-8 -*-
"""
Shortest path algorithms for unweighted graphs.
"""
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""
#    Copyright (C) 2004-2010 by 
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.

__all__ = ['bidirectional_shortest_path',
           'single_source_shortest_path', 
           'single_source_shortest_path_length',
           'all_pairs_shortest_path', 
           'all_pairs_shortest_path_length',
           'predecessor', 
           'floyd_warshall']

import networkx as nx

def single_source_shortest_path_length(G,source,cutoff=None):
    """Compute the shortest path lengths from source to all reachable nodes.

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Starting node for path

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    lengths : dictionary
        Dictionary of shortest path lengths keyed by target.

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> length=nx.single_source_shortest_path_length(G,0)
    >>> length[4]
    4
    >>> print length
    {0: 0, 1: 1, 2: 2, 3: 3, 4: 4}

    See Also
    --------
    shortest_path_length
    """
    seen={}                  # level (number of hops) when seen in BFS
    level=0                  # the current level
    nextlevel={source:1}  # dict of nodes to check at next level
    while nextlevel:
        thislevel=nextlevel  # advance to next level
        nextlevel={}         # and start a new list (fringe)
        for v in thislevel:
            if v not in seen: 
                seen[v]=level # set the level of vertex v
                nextlevel.update(G[v]) # add neighbors of v
        if (cutoff is not None and cutoff <= level):  break
        level=level+1
    return seen  # return all path lengths as dictionary


def all_pairs_shortest_path_length(G,cutoff=None):
    """ Compute the shortest path lengths between all nodes in G.

    Parameters
    ----------
    G : NetworkX graph

    cutoff : integer, optional
        depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    lengths : dictionary
        Dictionary of shortest path lengths keyed by source and target.

    Notes
    -----
    The dictionary returned only has keys for reachable node pairs.

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> length=nx.all_pairs_shortest_path_length(G)
    >>> print length[1][4]
    3
    >>> length[1]
    {0: 1, 1: 0, 2: 1, 3: 2, 4: 3}

    """
    paths={}
    for n in G:
        paths[n]=single_source_shortest_path_length(G,n,cutoff=cutoff)
    return paths        
        



def bidirectional_shortest_path(G,source,target):
    """Return a list of nodes in a shortest path between source and target.

    Parameters
    ----------
    G : NetworkX graph

    source : node label
       starting node for path

    target : node label
       ending node for path 

    Returns
    -------
    path: list
       List of nodes in a path from source to target.

    See Also
    --------
    shortest_path

    Notes
    -----
    This algorithm is used by shortest_path(G,source,target).
    """
    # call helper to do the real work
    results=_bidirectional_pred_succ(G,source,target)
    if results is False:
        return False  # no path from source to target
    pred,succ,w=results

    # build path from pred+w+succ
    path=[]
    # from w to target
    while w is not None:
        path.append(w)
        w=succ[w]
    # from source to w        
    w=pred[path[0]]
    while w is not None:
        path.insert(0,w)
        w=pred[w]

    return path        

def _bidirectional_pred_succ(G, source, target):
    """Bidirectional shortest path helper.

       Returns (pred,succ,w) where
       pred is a dictionary of predecessors from w to the source, and
       succ is a dictionary of successors from w to the target.
    """
    # does BFS from both source and target and meets in the middle
    if source is None or target is None:
        raise NetworkXException(\
            "Bidirectional shortest path called without source or target")
    if target == source:
        return ({target:None},{source:None},source)

    # handle either directed or undirected
    if G.is_directed():
        Gpred=G.predecessors_iter
        Gsucc=G.successors_iter
    else:
        Gpred=G.neighbors_iter
        Gsucc=G.neighbors_iter

    # predecesssor and successors in search
    pred={source:None}
    succ={target:None}

    # initialize fringes, start with forward
    forward_fringe=[source] 
    reverse_fringe=[target]  

    while forward_fringe and reverse_fringe:
        if len(forward_fringe) <= len(reverse_fringe):
            this_level=forward_fringe
            forward_fringe=[]
            for v in this_level:
                for w in Gsucc(v):
                    if w not in pred:
                        forward_fringe.append(w)
                        pred[w]=v
                    if w in succ:  return pred,succ,w # found path
        else:
            this_level=reverse_fringe
            reverse_fringe=[]
            for v in this_level:
                for w in Gpred(v):
                    if w not in succ:
                        succ[w]=v
                        reverse_fringe.append(w)
                    if w in pred:  return pred,succ,w # found path



    return False  # no path found


def single_source_shortest_path(G,source,cutoff=None):
    """Compute shortest path between source
    and all other nodes reachable from source.

    Parameters
    ----------
    G : NetworkX graph

    source : node label
       Starting node for path

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    lengths : dictionary
        Dictionary, keyed by target, of shortest paths.

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> path=nx.single_source_shortest_path(G,0)
    >>> path[4]
    [0, 1, 2, 3, 4]

    Notes
    -----
    There may be more than one shortest path between the
    source and target nodes. This function returns only one
    of them.

    See Also
    --------
    shortest_path
    """
    level=0                  # the current level
    nextlevel={source:1}       # list of nodes to check at next level
    paths={source:[source]}  # paths dictionary  (paths to key from source)
    if cutoff==0:
        return paths
    while nextlevel:
        thislevel=nextlevel
        nextlevel={}
        for v in thislevel:
            for w in G[v]:
                if w not in paths: 
                    paths[w]=paths[v]+[w]
                    nextlevel[w]=1
        level=level+1
        if (cutoff is not None and cutoff <= level):  break
    return paths   


def all_pairs_shortest_path(G,cutoff=None):
    """ Compute shortest paths between all nodes.

    Parameters
    ----------
    G : NetworkX graph

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    lengths : dictionary
        Dictionary, keyed by source and target, of shortest paths.

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> path=nx.all_pairs_shortest_path(G)
    >>> print path[0][4]
    [0, 1, 2, 3, 4]

    See Also
    --------
    floyd_warshall()

    """
    paths={}
    for n in G:
        paths[n]=single_source_shortest_path(G,n,cutoff=cutoff)
    return paths        


def floyd_warshall_array(G):
    """The Floyd-Warshall algorithm for all pairs shortest paths.
 

    Parameters
    ----------
    G : NetworkX graph

    Returns
    -------
    distance,pred : dictionaries
       A dictionary, keyed by source and target, of shortest path
       distance and predecessors in the shortest path.

    Notes
    ------
    This differs from floyd_warshall only in the types of the return
    values.  Thus, path[i,j] gives the predecessor at j on a path from
    i to j.  A value of None indicates that no path exists.  A
    predecessor of i indicates the beginning of the path.  The
    advantage of this implementation is that, while running time is
    O(n^3), running space is O(n^2).

    This algorithm handles negative weights.
    """

    # A weight that's more than any path weight
    HUGE_VAL = 1
    for u,v,d in G.edges(data=True):
        HUGE_VAL += abs(d)

    dist = {}
    dist_prev = {}
    pred = {}
    pred_prev = {}
    for i in G:
        dist[i] = {}
        dist_prev[i] = {}
        pred[i] = {}
        pred_prev[i] = {}
        inbrs=G[i]
        for j in G:
            dist[i][j] = 0              # arbitrary, just create slot
            pred[i][j] = 0              # arbitrary, just create slot
            if i == j:
                dist_prev[i][j] = 0
                pred_prev[i][j] = -1
            elif j in inbrs:
                val = inbrs[j]
                dist_prev[i][j] = val
                pred_prev[i][j] = i
            else:
                # no edge, distinct vertices
                dist_prev[i][j] = HUGE_VAL
                pred_prev[i][j] = -1    # None, but has to be numerically comparable
    for k in G:
        for i in G:
            for j in G:
                dist[i][j] = min(dist_prev[i][j], dist_prev[i][k] + dist_prev[k][j])
                if dist_prev[i][j] <= dist_prev[i][k] + dist[k][j]:
                    pred[i][j] = pred_prev[i][j]
                else:
                    pred[i][j] = pred_prev[k][j]
        tmp = dist_prev
        dist_prev = dist
        dist = tmp

        tmp = pred_prev
        pred_prev = pred
        pred = tmp
    # The last time through the loop, we exchanged for nothing, so
    # return the prev versions, since they're really the current
    # versions.
    return dist_prev, pred_prev
######################################################################

def floyd_warshall(G):
    """The Floyd-Warshall algorithm for all pairs shortest paths.
    
    Parameters
    ----------
    G : NetworkX graph

    Returns
    -------
    distance,pred : dictionaries
       A dictionary, keyed by source and target, of shortest path
       distance and predecessors in the shortest path.

    Notes
    -----
    This algorithm is most appropriate for dense graphs.
    The running time is O(n^3), and running space is O(n^2)
    where n is the number of nodes in G.  

    See Also
    --------
    all_pairs_shortest_path()
    all_pairs_shortest_path_length()

    """
    huge=1e30000 # sentinal value
    # dictionary-of-dictionaries representation for dist and pred
    dist={} 
    # initialize path distance dictionary to be the adjacency matrix
    # but with sentinal value "huge" where there is no edge
    # also set the distance to self to 0 (zero diagonal)
    pred={}
    # initialize predecessor dictionary 
    for u in G:
        dist[u]={}
        pred[u]={}
        unbrs=G[u]
        for v in G:
            if v in unbrs:
                dist[u][v]=unbrs[v].get('weight',1)
                pred[u][v]=u
            else:
                dist[u][v]=huge
                pred[u][v]=None 
        dist[u][u]=0  # set 0 distance to self

    for w in G.nodes():
        for u in G.nodes():
            for v in G.nodes():
                if dist[u][v] > dist[u][w] + dist[w][v]:
                    dist[u][v] = dist[u][w] + dist[w][v]
                    pred[u][v] = pred[w][v]
    return dist,pred


def predecessor(G,source,target=None,cutoff=None,return_seen=None):
    """ Returns dictionary of predecessors for the path from source to all
    nodes in G.  


    Parameters
    ----------
    G : NetworkX graph

    source : node label
       Starting node for path

    target : node label, optional
       Ending node for path. If provided only predecessors between 
       source and target are returned

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.


    Returns
    -------
    pred : dictionary
        Dictionary, keyed by node, of predecessors in the shortest path.

    Examples
    --------
    >>> G=nx.path_graph(4)
    >>> print G.nodes()
    [0, 1, 2, 3]
    >>> nx.predecessor(G,0)
    {0: [], 1: [0], 2: [1], 3: [2]}

    """
    level=0                  # the current level
    nextlevel=[source]       # list of nodes to check at next level
    seen={source:level}      # level (number of hops) when seen in BFS
    pred={source:[]}         # predecessor dictionary
    while nextlevel:
        level=level+1
        thislevel=nextlevel
        nextlevel=[]
        for v in thislevel:
            for w in G[v]:
                if w not in seen:
                    pred[w]=[v]
                    seen[w]=level
                    nextlevel.append(w)
                elif (seen[w]==level):# add v to predecessor list if it 
                    pred[w].append(v) # is at the correct level
        if (cutoff and cutoff <= level):
            break

    if target is not None:
        if return_seen:
            if not target in pred: return ([],-1)  # No predecessor
            return (pred[target],seen[target])
        else:
            if not target in pred: return []  # No predecessor
            return pred[target]
    else:
        if return_seen:
            return (pred,seen)
        else:
            return pred