1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
# -*- coding: utf-8 -*-
"""
Shortest path algorithms for unweighted graphs.
"""
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""
# Copyright (C) 2004-2010 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
__all__ = ['bidirectional_shortest_path',
'single_source_shortest_path',
'single_source_shortest_path_length',
'all_pairs_shortest_path',
'all_pairs_shortest_path_length',
'predecessor',
'floyd_warshall']
import networkx as nx
def single_source_shortest_path_length(G,source,cutoff=None):
"""Compute the shortest path lengths from source to all reachable nodes.
Parameters
----------
G : NetworkX graph
source : node
Starting node for path
cutoff : integer, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
lengths : dictionary
Dictionary of shortest path lengths keyed by target.
Examples
--------
>>> G=nx.path_graph(5)
>>> length=nx.single_source_shortest_path_length(G,0)
>>> length[4]
4
>>> print length
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
See Also
--------
shortest_path_length
"""
seen={} # level (number of hops) when seen in BFS
level=0 # the current level
nextlevel={source:1} # dict of nodes to check at next level
while nextlevel:
thislevel=nextlevel # advance to next level
nextlevel={} # and start a new list (fringe)
for v in thislevel:
if v not in seen:
seen[v]=level # set the level of vertex v
nextlevel.update(G[v]) # add neighbors of v
if (cutoff is not None and cutoff <= level): break
level=level+1
return seen # return all path lengths as dictionary
def all_pairs_shortest_path_length(G,cutoff=None):
""" Compute the shortest path lengths between all nodes in G.
Parameters
----------
G : NetworkX graph
cutoff : integer, optional
depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
lengths : dictionary
Dictionary of shortest path lengths keyed by source and target.
Notes
-----
The dictionary returned only has keys for reachable node pairs.
Examples
--------
>>> G=nx.path_graph(5)
>>> length=nx.all_pairs_shortest_path_length(G)
>>> print length[1][4]
3
>>> length[1]
{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}
"""
paths={}
for n in G:
paths[n]=single_source_shortest_path_length(G,n,cutoff=cutoff)
return paths
def bidirectional_shortest_path(G,source,target):
"""Return a list of nodes in a shortest path between source and target.
Parameters
----------
G : NetworkX graph
source : node label
starting node for path
target : node label
ending node for path
Returns
-------
path: list
List of nodes in a path from source to target.
See Also
--------
shortest_path
Notes
-----
This algorithm is used by shortest_path(G,source,target).
"""
# call helper to do the real work
results=_bidirectional_pred_succ(G,source,target)
if results is False:
return False # no path from source to target
pred,succ,w=results
# build path from pred+w+succ
path=[]
# from w to target
while w is not None:
path.append(w)
w=succ[w]
# from source to w
w=pred[path[0]]
while w is not None:
path.insert(0,w)
w=pred[w]
return path
def _bidirectional_pred_succ(G, source, target):
"""Bidirectional shortest path helper.
Returns (pred,succ,w) where
pred is a dictionary of predecessors from w to the source, and
succ is a dictionary of successors from w to the target.
"""
# does BFS from both source and target and meets in the middle
if source is None or target is None:
raise NetworkXException(\
"Bidirectional shortest path called without source or target")
if target == source:
return ({target:None},{source:None},source)
# handle either directed or undirected
if G.is_directed():
Gpred=G.predecessors_iter
Gsucc=G.successors_iter
else:
Gpred=G.neighbors_iter
Gsucc=G.neighbors_iter
# predecesssor and successors in search
pred={source:None}
succ={target:None}
# initialize fringes, start with forward
forward_fringe=[source]
reverse_fringe=[target]
while forward_fringe and reverse_fringe:
if len(forward_fringe) <= len(reverse_fringe):
this_level=forward_fringe
forward_fringe=[]
for v in this_level:
for w in Gsucc(v):
if w not in pred:
forward_fringe.append(w)
pred[w]=v
if w in succ: return pred,succ,w # found path
else:
this_level=reverse_fringe
reverse_fringe=[]
for v in this_level:
for w in Gpred(v):
if w not in succ:
succ[w]=v
reverse_fringe.append(w)
if w in pred: return pred,succ,w # found path
return False # no path found
def single_source_shortest_path(G,source,cutoff=None):
"""Compute shortest path between source
and all other nodes reachable from source.
Parameters
----------
G : NetworkX graph
source : node label
Starting node for path
cutoff : integer, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
lengths : dictionary
Dictionary, keyed by target, of shortest paths.
Examples
--------
>>> G=nx.path_graph(5)
>>> path=nx.single_source_shortest_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]
Notes
-----
There may be more than one shortest path between the
source and target nodes. This function returns only one
of them.
See Also
--------
shortest_path
"""
level=0 # the current level
nextlevel={source:1} # list of nodes to check at next level
paths={source:[source]} # paths dictionary (paths to key from source)
if cutoff==0:
return paths
while nextlevel:
thislevel=nextlevel
nextlevel={}
for v in thislevel:
for w in G[v]:
if w not in paths:
paths[w]=paths[v]+[w]
nextlevel[w]=1
level=level+1
if (cutoff is not None and cutoff <= level): break
return paths
def all_pairs_shortest_path(G,cutoff=None):
""" Compute shortest paths between all nodes.
Parameters
----------
G : NetworkX graph
cutoff : integer, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
lengths : dictionary
Dictionary, keyed by source and target, of shortest paths.
Examples
--------
>>> G=nx.path_graph(5)
>>> path=nx.all_pairs_shortest_path(G)
>>> print path[0][4]
[0, 1, 2, 3, 4]
See Also
--------
floyd_warshall()
"""
paths={}
for n in G:
paths[n]=single_source_shortest_path(G,n,cutoff=cutoff)
return paths
def floyd_warshall_array(G):
"""The Floyd-Warshall algorithm for all pairs shortest paths.
Parameters
----------
G : NetworkX graph
Returns
-------
distance,pred : dictionaries
A dictionary, keyed by source and target, of shortest path
distance and predecessors in the shortest path.
Notes
------
This differs from floyd_warshall only in the types of the return
values. Thus, path[i,j] gives the predecessor at j on a path from
i to j. A value of None indicates that no path exists. A
predecessor of i indicates the beginning of the path. The
advantage of this implementation is that, while running time is
O(n^3), running space is O(n^2).
This algorithm handles negative weights.
"""
# A weight that's more than any path weight
HUGE_VAL = 1
for u,v,d in G.edges(data=True):
HUGE_VAL += abs(d)
dist = {}
dist_prev = {}
pred = {}
pred_prev = {}
for i in G:
dist[i] = {}
dist_prev[i] = {}
pred[i] = {}
pred_prev[i] = {}
inbrs=G[i]
for j in G:
dist[i][j] = 0 # arbitrary, just create slot
pred[i][j] = 0 # arbitrary, just create slot
if i == j:
dist_prev[i][j] = 0
pred_prev[i][j] = -1
elif j in inbrs:
val = inbrs[j]
dist_prev[i][j] = val
pred_prev[i][j] = i
else:
# no edge, distinct vertices
dist_prev[i][j] = HUGE_VAL
pred_prev[i][j] = -1 # None, but has to be numerically comparable
for k in G:
for i in G:
for j in G:
dist[i][j] = min(dist_prev[i][j], dist_prev[i][k] + dist_prev[k][j])
if dist_prev[i][j] <= dist_prev[i][k] + dist[k][j]:
pred[i][j] = pred_prev[i][j]
else:
pred[i][j] = pred_prev[k][j]
tmp = dist_prev
dist_prev = dist
dist = tmp
tmp = pred_prev
pred_prev = pred
pred = tmp
# The last time through the loop, we exchanged for nothing, so
# return the prev versions, since they're really the current
# versions.
return dist_prev, pred_prev
######################################################################
def floyd_warshall(G):
"""The Floyd-Warshall algorithm for all pairs shortest paths.
Parameters
----------
G : NetworkX graph
Returns
-------
distance,pred : dictionaries
A dictionary, keyed by source and target, of shortest path
distance and predecessors in the shortest path.
Notes
-----
This algorithm is most appropriate for dense graphs.
The running time is O(n^3), and running space is O(n^2)
where n is the number of nodes in G.
See Also
--------
all_pairs_shortest_path()
all_pairs_shortest_path_length()
"""
huge=1e30000 # sentinal value
# dictionary-of-dictionaries representation for dist and pred
dist={}
# initialize path distance dictionary to be the adjacency matrix
# but with sentinal value "huge" where there is no edge
# also set the distance to self to 0 (zero diagonal)
pred={}
# initialize predecessor dictionary
for u in G:
dist[u]={}
pred[u]={}
unbrs=G[u]
for v in G:
if v in unbrs:
dist[u][v]=unbrs[v].get('weight',1)
pred[u][v]=u
else:
dist[u][v]=huge
pred[u][v]=None
dist[u][u]=0 # set 0 distance to self
for w in G.nodes():
for u in G.nodes():
for v in G.nodes():
if dist[u][v] > dist[u][w] + dist[w][v]:
dist[u][v] = dist[u][w] + dist[w][v]
pred[u][v] = pred[w][v]
return dist,pred
def predecessor(G,source,target=None,cutoff=None,return_seen=None):
""" Returns dictionary of predecessors for the path from source to all
nodes in G.
Parameters
----------
G : NetworkX graph
source : node label
Starting node for path
target : node label, optional
Ending node for path. If provided only predecessors between
source and target are returned
cutoff : integer, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
pred : dictionary
Dictionary, keyed by node, of predecessors in the shortest path.
Examples
--------
>>> G=nx.path_graph(4)
>>> print G.nodes()
[0, 1, 2, 3]
>>> nx.predecessor(G,0)
{0: [], 1: [0], 2: [1], 3: [2]}
"""
level=0 # the current level
nextlevel=[source] # list of nodes to check at next level
seen={source:level} # level (number of hops) when seen in BFS
pred={source:[]} # predecessor dictionary
while nextlevel:
level=level+1
thislevel=nextlevel
nextlevel=[]
for v in thislevel:
for w in G[v]:
if w not in seen:
pred[w]=[v]
seen[w]=level
nextlevel.append(w)
elif (seen[w]==level):# add v to predecessor list if it
pred[w].append(v) # is at the correct level
if (cutoff and cutoff <= level):
break
if target is not None:
if return_seen:
if not target in pred: return ([],-1) # No predecessor
return (pred[target],seen[target])
else:
if not target in pred: return [] # No predecessor
return pred[target]
else:
if return_seen:
return (pred,seen)
else:
return pred
|