File: boundary.txt

package info (click to toggle)
python-networkx 1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 2,780 kB
  • ctags: 1,910
  • sloc: python: 29,050; makefile: 126
file content (149 lines) | stat: -rw-r--r-- 3,092 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

Boundary
========

>>> import networkx
>>> from networkx.algorithms.boundary import *
>>> from networkx import null_graph, path_graph, complete_graph, petersen_graph
>>> from networkx import convert_node_labels_to_integers as cnlti

Some small graphs
-----------------

>>> null=null_graph()
>>> P10=cnlti(path_graph(10),first_label=1)
>>> K10=cnlti(complete_graph(10),first_label=1)

Node and Edge Boundaries
------------------------

null graph has empty boundaries

>>> node_boundary(null,[])
[]
>>> node_boundary(null,[],[])
[]
>>> node_boundary(null,[1,2,3])
[]
>>> node_boundary(null,[1,2,3],[4,5,6])
[]
>>> node_boundary(null,[1,2,3],[3,4,5])
[]


>>> edge_boundary(null,[])
[]
>>> edge_boundary(null,[],[])
[]
>>> edge_boundary(null,[1,2,3])
[]
>>> edge_boundary(null,[1,2,3],[4,5,6])
[]
>>> edge_boundary(null,[1,2,3],[3,4,5])
[]

Check boundaries in path graph.

>>> node_boundary(P10,[])
[]
>>> node_boundary(P10,[],[])
[]
>>> node_boundary(P10,[1,2,3])
[4]
>>> sorted(node_boundary(P10,[4,5,6]))
[3, 7]
>>> sorted(node_boundary(P10,[3,4,5,6,7]))
[2, 8]
>>> node_boundary(P10,[8,9,10])
[7]
>>> sorted(node_boundary(P10,[4,5,6],[9,10]))
[]
>>> node_boundary(P10,[1,2,3],[3,4,5]) 
[4]

# Note we used to raise an exception when bunches not disjoint.


>>> edge_boundary(P10,[])
[]
>>> edge_boundary(P10,[],[])
[]
>>> edge_boundary(P10,[1,2,3])
[(3, 4)]
>>> sorted(edge_boundary(P10,[4,5,6]))
[(4, 3), (6, 7)]
>>> sorted(edge_boundary(P10,[3,4,5,6,7]))
[(3, 2), (7, 8)]
>>> edge_boundary(P10,[8,9,10])
[(8, 7)]
>>> sorted(edge_boundary(P10,[4,5,6],[9,10]))
[]
>>> edge_boundary(P10,[1,2,3],[3,4,5]) 
[(2, 3), (3, 4)]

Check boundaries in a complete graph

>>> node_boundary(K10,[])
[]
>>> node_boundary(K10,[],[])
[]
>>> sorted(node_boundary(K10,[1,2,3]))
[4, 5, 6, 7, 8, 9, 10]
>>> sorted(node_boundary(K10,[4,5,6]))
[1, 2, 3, 7, 8, 9, 10]
>>> sorted(node_boundary(K10,[3,4,5,6,7]))
[1, 2, 8, 9, 10]
>>> sorted(node_boundary(K10,[4,5,6],[]))
[]
>>> node_boundary(K10,K10)
[]
>>> node_boundary(K10,[1,2,3],[3,4,5]) 
[4, 5]


>>> edge_boundary(K10,[])
[]
>>> edge_boundary(K10,[],[])
[]
>>> len(edge_boundary(K10,[1,2,3]))
21
>>> len(edge_boundary(K10,[4,5,6,7]))
24
>>> len(edge_boundary(K10,[3,4,5,6,7]))
25
>>> len(edge_boundary(K10,[8,9,10]))
21
>>> sorted(edge_boundary(K10,[4,5,6],[9,10]))
[(4, 9), (4, 10), (5, 9), (5, 10), (6, 9), (6, 10)]
>>> edge_boundary(K10,[1,2,3],[3,4,5]) 
[(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)]

Check boundaries in the petersen graph

  cheeger(G,k)=min(|bdy(S)|/|S| for |S|=k, 0<k<=|V(G)|/2)

>>> from random import sample
>>> P=petersen_graph()
>>> def cheeger(G,k):
...    return  min([float(len(node_boundary(G,sample(G.nodes(),k))))/k for n in xrange(100)])
>>> print "%4.2f"%cheeger(P,1)
3.00
>>> print "%4.2f"%cheeger(P,2)
2.00
>>> print "%4.2f"%cheeger(P,3)
1.67
>>> print "%4.2f"%cheeger(P,4)
1.00
>>> print "%4.2f"%cheeger(P,5)
0.80
>>> print "%4.2f"%cheeger(P,6)
0.50
>>> print "%4.2f"%cheeger(P,7)
0.43
>>> print "%4.2f"%cheeger(P,8)
0.25
>>> print "%4.2f"%cheeger(P,9)
0.11
>>> print "%4.2f"%cheeger(P,10)
0.00