1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
Boundary
========
>>> import networkx
>>> from networkx.algorithms.boundary import *
>>> from networkx import null_graph, path_graph, complete_graph, petersen_graph
>>> from networkx import convert_node_labels_to_integers as cnlti
Some small graphs
-----------------
>>> null=null_graph()
>>> P10=cnlti(path_graph(10),first_label=1)
>>> K10=cnlti(complete_graph(10),first_label=1)
Node and Edge Boundaries
------------------------
null graph has empty boundaries
>>> node_boundary(null,[])
[]
>>> node_boundary(null,[],[])
[]
>>> node_boundary(null,[1,2,3])
[]
>>> node_boundary(null,[1,2,3],[4,5,6])
[]
>>> node_boundary(null,[1,2,3],[3,4,5])
[]
>>> edge_boundary(null,[])
[]
>>> edge_boundary(null,[],[])
[]
>>> edge_boundary(null,[1,2,3])
[]
>>> edge_boundary(null,[1,2,3],[4,5,6])
[]
>>> edge_boundary(null,[1,2,3],[3,4,5])
[]
Check boundaries in path graph.
>>> node_boundary(P10,[])
[]
>>> node_boundary(P10,[],[])
[]
>>> node_boundary(P10,[1,2,3])
[4]
>>> sorted(node_boundary(P10,[4,5,6]))
[3, 7]
>>> sorted(node_boundary(P10,[3,4,5,6,7]))
[2, 8]
>>> node_boundary(P10,[8,9,10])
[7]
>>> sorted(node_boundary(P10,[4,5,6],[9,10]))
[]
>>> node_boundary(P10,[1,2,3],[3,4,5])
[4]
# Note we used to raise an exception when bunches not disjoint.
>>> edge_boundary(P10,[])
[]
>>> edge_boundary(P10,[],[])
[]
>>> edge_boundary(P10,[1,2,3])
[(3, 4)]
>>> sorted(edge_boundary(P10,[4,5,6]))
[(4, 3), (6, 7)]
>>> sorted(edge_boundary(P10,[3,4,5,6,7]))
[(3, 2), (7, 8)]
>>> edge_boundary(P10,[8,9,10])
[(8, 7)]
>>> sorted(edge_boundary(P10,[4,5,6],[9,10]))
[]
>>> edge_boundary(P10,[1,2,3],[3,4,5])
[(2, 3), (3, 4)]
Check boundaries in a complete graph
>>> node_boundary(K10,[])
[]
>>> node_boundary(K10,[],[])
[]
>>> sorted(node_boundary(K10,[1,2,3]))
[4, 5, 6, 7, 8, 9, 10]
>>> sorted(node_boundary(K10,[4,5,6]))
[1, 2, 3, 7, 8, 9, 10]
>>> sorted(node_boundary(K10,[3,4,5,6,7]))
[1, 2, 8, 9, 10]
>>> sorted(node_boundary(K10,[4,5,6],[]))
[]
>>> node_boundary(K10,K10)
[]
>>> node_boundary(K10,[1,2,3],[3,4,5])
[4, 5]
>>> edge_boundary(K10,[])
[]
>>> edge_boundary(K10,[],[])
[]
>>> len(edge_boundary(K10,[1,2,3]))
21
>>> len(edge_boundary(K10,[4,5,6,7]))
24
>>> len(edge_boundary(K10,[3,4,5,6,7]))
25
>>> len(edge_boundary(K10,[8,9,10]))
21
>>> sorted(edge_boundary(K10,[4,5,6],[9,10]))
[(4, 9), (4, 10), (5, 9), (5, 10), (6, 9), (6, 10)]
>>> edge_boundary(K10,[1,2,3],[3,4,5])
[(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)]
Check boundaries in the petersen graph
cheeger(G,k)=min(|bdy(S)|/|S| for |S|=k, 0<k<=|V(G)|/2)
>>> from random import sample
>>> P=petersen_graph()
>>> def cheeger(G,k):
... return min([float(len(node_boundary(G,sample(G.nodes(),k))))/k for n in xrange(100)])
>>> print "%4.2f"%cheeger(P,1)
3.00
>>> print "%4.2f"%cheeger(P,2)
2.00
>>> print "%4.2f"%cheeger(P,3)
1.67
>>> print "%4.2f"%cheeger(P,4)
1.00
>>> print "%4.2f"%cheeger(P,5)
0.80
>>> print "%4.2f"%cheeger(P,6)
0.50
>>> print "%4.2f"%cheeger(P,7)
0.43
>>> print "%4.2f"%cheeger(P,8)
0.25
>>> print "%4.2f"%cheeger(P,9)
0.11
>>> print "%4.2f"%cheeger(P,10)
0.00
|