File: cluster.txt

package info (click to toggle)
python-networkx 1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 2,780 kB
  • ctags: 1,910
  • sloc: python: 29,050; makefile: 126
file content (106 lines) | stat: -rw-r--r-- 1,764 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
Cluster
=======

>>> from networkx import *
>>> G = Graph()

>>> triangles(G).values()
[]
>>> triangles(G)
{}

>>> clustering(G).values()
[]
>>> clustering(G)
{}

>>> transitivity(G)
0.0

>>> G = path_graph(10)

>>> triangles(G).values()
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> triangles(G)
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0}

>>> clustering(G).values()
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
>>> clustering(G)
{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0, 5: 0.0, 6: 0.0, 7: 0.0, 8: 0.0, 9: 0.0}

>>> transitivity(G)
0.0


>>> G = cubical_graph()

>>> triangles(G).values()
[0, 0, 0, 0, 0, 0, 0, 0]
>>> triangles(G,1)
0
>>> triangles(G,[1,2]).values()
[0, 0]
>>> triangles(G,1)
0
>>> triangles(G,[1,2])
{1: 0, 2: 0}
>>> clustering(G).values()
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
>>> clustering(G,1)
0.0
>>> clustering(G,[1,2]).values()
[0.0, 0.0]
>>> clustering(G,1)
0.0
>>> clustering(G,[1,2])
{1: 0.0, 2: 0.0}
>>> transitivity(G)
0.0


>>> G = complete_graph(5)

>>> triangles(G).values()
[6, 6, 6, 6, 6]
>>> sum(triangles(G).values())/3
10
>>> triangles(G,1)
6
>>> clustering(G).values()
[1.0, 1.0, 1.0, 1.0, 1.0]
>>> average_clustering(G)
1.0
>>> transitivity(G)
1.0

>>> G.remove_edge(1,2)

>>> triangles(G).values()
[5, 3, 3, 5, 5]
>>> triangles(G,1)
3
>>> clustering(G).values() == [5./6., 1.0, 1.0, 5./6., 5./6.]
True
>>> clustering(G,[1,4])
{1: 1.0, 4: 0.83333333333333337}
>>> transitivity(G)
0.875


Transitivity is weighted average of clustering
----------------------------------------------

>>> t1=transitivity(G)
>>> print t1
0.875
>>> (cluster_d2,weights)=clustering(G,weights=True)
>>> trans=[]
>>> for v in G.nodes():
...   trans.append(cluster_d2[v]*weights[v])
>>> t2=sum(trans)
>>> abs(t1-t2)<1e-15 
True