File: matching.txt

package info (click to toggle)
python-networkx 1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 2,780 kB
  • ctags: 1,910
  • sloc: python: 29,050; makefile: 126
file content (192 lines) | stat: -rw-r--r-- 6,067 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
Maximum weight matching
=======================

>>> import math
>>> from networkx import *

>>> def sortdict(d):
...     s = d.items()
...     s.sort()
...     print '{' + ', '.join(map(lambda t: ': '.join(map(repr, t)), s)) + '}'


Trivial cases
-------------

>>> G = Graph()
>>> max_weight_matching(G)
{}

>>> G = Graph()
>>> G.add_edge(0, 0, weight=100)
>>> max_weight_matching(G)
{}

>>> G = Graph()
>>> G.add_edge(0, 1)
>>> sortdict(max_weight_matching(G))
{0: 1, 1: 0}

>>> G = Graph()
>>> G.add_edge('one', 'two', weight=10)
>>> G.add_edge('two', 'three', weight=11)
>>> sortdict(max_weight_matching(G))
{'three': 'two', 'two': 'three'}

>>> G = Graph()
>>> G.add_edge((1,), 2, weight=5)
>>> G.add_edge(2, 3, weight=11)
>>> G.add_edge(3, 4, weight=5)
>>> sortdict(max_weight_matching(G))
{2: 3, 3: 2}
>>> sortdict(max_weight_matching(G, 1))
{2: (1,), 3: 4, 4: 3, (1,): 2}

Floating point weights:

>>> G = Graph()
>>> G.add_edge(1, 2, weight=math.pi)
>>> G.add_edge(2, 3, weight=math.exp(1))
>>> G.add_edge(1, 3, weight=3.0)
>>> G.add_edge(1, 4, weight=math.sqrt(2.0))
>>> sortdict(max_weight_matching(G))
{1: 4, 2: 3, 3: 2, 4: 1}

Negative weights:

>>> G = Graph()
>>> G.add_edge(1, 2, weight=2)
>>> G.add_edge(1, 3, weight=-2)
>>> G.add_edge(2, 3, weight=1)
>>> G.add_edge(2, 4, weight=-1)
>>> G.add_edge(3, 4, weight=-6)
>>> sortdict(max_weight_matching(G))
{1: 2, 2: 1}
>>> sortdict(max_weight_matching(G, 1))
{1: 3, 2: 4, 3: 1, 4: 2}


Blossoms
--------

Create S-blossom and use it for augmentation:

>>> G = Graph()
>>> G.add_weighted_edges_from([ (1, 2, 8), (1, 3, 9), (2, 3, 10), (3, 4, 7) ])
>>> sortdict(max_weight_matching(G))
{1: 2, 2: 1, 3: 4, 4: 3}
>>> G.add_weighted_edges_from([ (1, 6, 5), (4, 5, 6) ])
>>> sortdict(max_weight_matching(G))
{1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1}

Create S-blossom, relabel as T-blossom, use for augmentation:

>>> G = Graph()
>>> G.add_weighted_edges_from([ (1, 2, 9), (1, 3, 8), (2, 3, 10), (1, 4, 5),
...                    (4, 5, 4), (1, 6, 3) ])
>>> sortdict(max_weight_matching(G))
{1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1}
>>> G.add_edge(4, 5, weight=3)
>>> G.add_edge(1, 6, weight=4)
>>> sortdict(max_weight_matching(G))
{1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1}
>>> G.remove_edge(1, 6)
>>> G.add_edge(3, 6, weight=4)
>>> sortdict(max_weight_matching(G))
{1: 2, 2: 1, 3: 6, 4: 5, 5: 4, 6: 3}

Create nested S-blossom, use for augmentation:

>>> G = Graph()
>>> G.add_weighted_edges_from([ (1, 2, 9), (1, 3, 9), (2, 3, 10), (2, 4, 8),
...                    (3, 5, 8), (4, 5, 10), (5, 6, 6) ])
>>> sortdict(max_weight_matching(G))
{1: 3, 2: 4, 3: 1, 4: 2, 5: 6, 6: 5}

Create S-blossom, relabel as S, include in nested S-blossom:

>>> G = Graph()
>>> G.add_weighted_edges_from([ (1, 2, 10), (1, 7, 10), (2, 3, 12), (3, 4, 20),
...                    (3, 5, 20), (4, 5, 25), (5, 6, 10), (6, 7, 10),
...                    (7, 8, 8) ])
>>> sortdict(max_weight_matching(G))
{1: 2, 2: 1, 3: 4, 4: 3, 5: 6, 6: 5, 7: 8, 8: 7}

Create nested S-blossom, augment, expand recursively:

>>> G = Graph()
>>> G.add_weighted_edges_from([ (1, 2, 8), (1, 3, 8), (2, 3, 10), (2, 4, 12),
...                    (3, 5, 12), (4, 5, 14), (4, 6, 12), (5, 7, 12),
...                    (6, 7, 14), (7, 8, 12) ])
>>> sortdict(max_weight_matching(G))
{1: 2, 2: 1, 3: 5, 4: 6, 5: 3, 6: 4, 7: 8, 8: 7}

Create S-blossom, relabel as T, expand:

>>> G = Graph()
>>> G.add_weighted_edges_from([ (1, 2, 23), (1, 5, 22), (1, 6, 15), (2, 3, 25),
...                    (3, 4, 22), (4, 5, 25), (4, 8, 14), (5, 7, 13) ])
>>> sortdict(max_weight_matching(G))
{1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4}

Create nested S-blossom, relabel as T, expand:

>>> G = Graph()
>>> G.add_weighted_edges_from([ (1, 2, 19), (1, 3, 20), (1, 8, 8), (2, 3, 25),
...                    (2, 4, 18), (3, 5, 18), (4, 5, 13), (4, 7, 7),
...                    (5, 6, 7) ])
>>> sortdict(max_weight_matching(G))
{1: 8, 2: 3, 3: 2, 4: 7, 5: 6, 6: 5, 7: 4, 8: 1}


Nasty cases
-----------

Create blossom, relabel as T in more than one way, expand, augment:

>>> G = Graph()
>>> G.add_weighted_edges_from([ (1, 2, 45), (1, 5, 45), (2, 3, 50), (3, 4, 45),
...                    (4, 5, 50), (1, 6, 30), (3, 9, 35), (4, 8, 35),
...                    (5, 7, 26), (9, 10, 5) ])
>>> sortdict(max_weight_matching(G))
{1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9}

Again but slightly different:

>>> G = Graph()
>>> G.add_weighted_edges_from([ (1, 2, 45), (1, 5, 45), (2, 3, 50), (3, 4, 45),
...                    (4, 5, 50), (1, 6, 30), (3, 9, 35), (4, 8, 26),
...                    (5, 7, 40), (9, 10, 5) ])
>>> sortdict(max_weight_matching(G))
{1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9}

Create blossom, relabel as T, expand such that a new least-slack S-to-free
edge is produced, augment:

>>> G = Graph()
>>> G.add_weighted_edges_from([ (1, 2, 45), (1, 5, 45), (2, 3, 50), (3, 4, 45),
...                    (4, 5, 50), (1, 6, 30), (3, 9, 35), (4, 8, 28),
...                    (5, 7, 26), (9, 10, 5) ])
>>> sortdict(max_weight_matching(G))
{1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9}

Create nested blossom, relabel as T in more than one way, expand outer
blossom such that inner blossom ends up on an augmenting path:

>>> G = Graph()
>>> G.add_weighted_edges_from([ (1, 2, 45), (1, 7, 45), (2, 3, 50), (3, 4, 45),
...                    (4, 5, 95), (4, 6, 94), (5, 6, 94), (6, 7, 50),
...                    (1, 8, 30), (3, 11, 35), (5, 9, 36), (7, 10, 26),
...                    (11, 12, 5) ])
>>> sortdict(max_weight_matching(G))
{1: 8, 2: 3, 3: 2, 4: 6, 5: 9, 6: 4, 7: 10, 8: 1, 9: 5, 10: 7, 11: 12, 12: 11}

Create nested S-blossom, relabel as S, expand recursively:

>>> G = Graph()
>>> G.add_weighted_edges_from([ (1, 2, 40), (1, 3, 40), (2, 3, 60), (2, 4, 55),
...                    (3, 5, 55), (4, 5, 50), (1, 8, 15), (5, 7, 30),
...                    (7, 6, 10), (8, 10, 10), (4, 9, 30) ])
>>> sortdict(max_weight_matching(G, 1))
{1: 2, 2: 1, 3: 5, 4: 9, 5: 3, 6: 7, 7: 6, 8: 10, 9: 4, 10: 8}