File: test_mixing_attributes.py

package info (click to toggle)
python-networkx 1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 2,780 kB
  • ctags: 1,910
  • sloc: python: 29,050; makefile: 126
file content (204 lines) | stat: -rw-r--r-- 7,352 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/usr/bin/env python
from nose.tools import *
import networkx
import networkx.algorithms.mixing as mixing


class TestAttributeMixing(object):
    
    def setUp(self):
        G=networkx.Graph() 
        G.add_nodes_from([0,1],fish='one')
        G.add_nodes_from([2,3],fish='two')
        G.add_nodes_from([4],fish='red')
        G.add_nodes_from([5],fish='blue')
        G.add_edges_from([(0,1),(2,3),(0,4),(2,5)])
        self.G=G

        D=networkx.DiGraph() 
        D.add_nodes_from([0,1],fish='one')
        D.add_nodes_from([2,3],fish='two')
        D.add_nodes_from([4],fish='red')
        D.add_nodes_from([5],fish='blue')
        D.add_edges_from([(0,1),(2,3),(0,4),(2,5)])
        self.D=D

        M=networkx.MultiGraph() 
        M.add_nodes_from([0,1],fish='one')
        M.add_nodes_from([2,3],fish='two')
        M.add_nodes_from([4],fish='red')
        M.add_nodes_from([5],fish='blue')
        M.add_edges_from([(0,1),(0,1),(2,3)])
        self.M=M

        S=networkx.Graph()
        S.add_nodes_from([0,1],fish='one')
        S.add_nodes_from([2,3],fish='two')
        S.add_nodes_from([4],fish='red')
        S.add_nodes_from([5],fish='blue')
        S.add_edge(0,0)
        S.add_edge(2,2)
        self.S=S

    def test_node_attribute_xy_undirected(self):
        attrxy=sorted(mixing.node_attribute_xy(self.G,'fish'))
        attrxy_result=sorted([('one','one'),
                              ('one','one'),
                              ('two','two'),
                              ('two','two'),
                              ('one','red'),
                              ('red','one'),
                              ('blue','two'),
                              ('two','blue')
                              ])
        assert_equal(attrxy,attrxy_result)

    def test_node_attribute_xy_directed(self):
        attrxy=sorted(mixing.node_attribute_xy(self.D,'fish'))
        attrxy_result=sorted([('one','one'),
                              ('two','two'),
                              ('one','red'),
                              ('two','blue')
                              ])
        assert_equal(attrxy,attrxy_result)

    def test_node_attribute_xy_multigraph(self):
        attrxy=sorted(mixing.node_attribute_xy(self.M,'fish'))
        attrxy_result=[('one','one'),
                       ('one','one'),
                       ('one','one'),
                       ('one','one'),
                       ('two','two'),
                       ('two','two')
                       ]
        assert_equal(attrxy,attrxy_result)

    def test_node_attribute_xy_selfloop(self):
        attrxy=sorted(mixing.node_attribute_xy(self.S,'fish'))
        attrxy_result=[('one','one'),
                       ('two','two')
                       ]
        assert_equal(attrxy,attrxy_result)

    def test_attribute_mixing_dict_undirected(self):
        d=mixing.attribute_mixing_dict(self.G,'fish')
        d_result={'one':{'one':2,'red':1},
                  'two':{'two':2,'blue':1},
                  'red':{'one':1},
                  'blue':{'two':1}
                  }
        assert_equal(d,d_result)

    def test_attribute_mixing_dict_directed(self):
        d=mixing.attribute_mixing_dict(self.D,'fish')
        d_result={'one':{'one':1,'red':1},
                  'two':{'two':1,'blue':1},
                  'red':{},
                  'blue':{}
                  }
        assert_equal(d,d_result)


    def test_attribute_mixing_dict_multigraph(self):
        d=mixing.attribute_mixing_dict(self.M,'fish')
        d_result={'one':{'one':4},
                  'two':{'two':2},
                  }
        assert_equal(d,d_result)



class TestAttributeMixingMatrix(TestAttributeMixing):
    @classmethod
    def setupClass(cls):
        global np
        global npt
        try:
            import numpy as np
            import numpy.testing as npt

        except ImportError:
             raise SkipTest('NumPy not available.')

    def test_attribute_mixing_matrix_undirected(self):
        mapping={'one':0,'two':1,'red':2,'blue':3}
        a_result=np.array([[2,0,1,0],
                           [0,2,0,1],
                           [1,0,0,0],
                           [0,1,0,0]]
                          )
        a=mixing.attribute_mixing_matrix(self.G,'fish',
                                         mapping=mapping,
                                         normalized=False)
        npt.assert_equal(a,a_result)
        a=mixing.attribute_mixing_matrix(self.G,'fish',
                                         mapping=mapping)
        npt.assert_equal(a,a_result/float(a_result.sum()))

    def test_attribute_mixing_matrix_directed(self):
        mapping={'one':0,'two':1,'red':2,'blue':3}
        a_result=np.array([[1,0,1,0],
                           [0,1,0,1],
                           [0,0,0,0],
                           [0,0,0,0]]
                          )
        a=mixing.attribute_mixing_matrix(self.D,'fish',
                                         mapping=mapping,
                                         normalized=False)
        npt.assert_equal(a,a_result)
        a=mixing.attribute_mixing_matrix(self.D,'fish',
                                         mapping=mapping)
        npt.assert_equal(a,a_result/float(a_result.sum()))

    def test_attribute_mixing_matrix_multigraph(self):
        mapping={'one':0,'two':1,'red':2,'blue':3}
        a_result=np.array([[4,0,0,0],
                           [0,2,0,0],
                           [0,0,0,0],
                           [0,0,0,0]]
                          )
        a=mixing.attribute_mixing_matrix(self.M,'fish',
                                         mapping=mapping,
                                         normalized=False)
        npt.assert_equal(a,a_result)
        a=mixing.attribute_mixing_matrix(self.M,'fish',
                                         mapping=mapping)
        npt.assert_equal(a,a_result/float(a_result.sum()))


    def test_attribute_assortativity_undirected(self):
        r=mixing.attribute_assortativity(self.G,'fish')
        assert_equal(r,6.0/22.0)

    def test_attribute_assortativity_directed(self):
        r=mixing.attribute_assortativity(self.D,'fish')
        assert_equal(r,1.0/3.0)

    def test_attribute_assortativity_multigraph(self):
        r=mixing.attribute_assortativity(self.M,'fish')
        assert_equal(r,1.0)

    def test_attribute_assortativity_coefficient(self):
        # from "Mixing patterns in networks"
        a=np.array([[0.258,0.016,0.035,0.013],
                    [0.012,0.157,0.058,0.019],
                    [0.013,0.023,0.306,0.035],
                    [0.005,0.007,0.024,0.016]])
        r=mixing.attribute_assortativity_coefficient(a)
        npt.assert_almost_equal(r,0.623,decimal=3)

    def test_attribute_assortativity_coefficient(self):
        a=np.array([[0.18,0.02,0.01,0.03],
                    [0.02,0.20,0.03,0.02],
                    [0.01,0.03,0.16,0.01],
                    [0.03,0.02,0.01,0.22]])

        r=mixing.attribute_assortativity_coefficient(a)
        npt.assert_almost_equal(r,0.68,decmial=2)

    def test_attribute_assortativity_coefficient(self):
        a=np.array([[50,50,0],[50,50,0],[0,0,2]])
        r=mixing.attribute_assortativity_coefficient(a)
        npt.assert_almost_equal(r,0.029,decimal=3)