1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
#!/usr/bin/env python
from nose.tools import *
import networkx
import networkx.algorithms.mixing as mixing
class TestAttributeMixing(object):
def setUp(self):
G=networkx.Graph()
G.add_nodes_from([0,1],fish='one')
G.add_nodes_from([2,3],fish='two')
G.add_nodes_from([4],fish='red')
G.add_nodes_from([5],fish='blue')
G.add_edges_from([(0,1),(2,3),(0,4),(2,5)])
self.G=G
D=networkx.DiGraph()
D.add_nodes_from([0,1],fish='one')
D.add_nodes_from([2,3],fish='two')
D.add_nodes_from([4],fish='red')
D.add_nodes_from([5],fish='blue')
D.add_edges_from([(0,1),(2,3),(0,4),(2,5)])
self.D=D
M=networkx.MultiGraph()
M.add_nodes_from([0,1],fish='one')
M.add_nodes_from([2,3],fish='two')
M.add_nodes_from([4],fish='red')
M.add_nodes_from([5],fish='blue')
M.add_edges_from([(0,1),(0,1),(2,3)])
self.M=M
S=networkx.Graph()
S.add_nodes_from([0,1],fish='one')
S.add_nodes_from([2,3],fish='two')
S.add_nodes_from([4],fish='red')
S.add_nodes_from([5],fish='blue')
S.add_edge(0,0)
S.add_edge(2,2)
self.S=S
def test_node_attribute_xy_undirected(self):
attrxy=sorted(mixing.node_attribute_xy(self.G,'fish'))
attrxy_result=sorted([('one','one'),
('one','one'),
('two','two'),
('two','two'),
('one','red'),
('red','one'),
('blue','two'),
('two','blue')
])
assert_equal(attrxy,attrxy_result)
def test_node_attribute_xy_directed(self):
attrxy=sorted(mixing.node_attribute_xy(self.D,'fish'))
attrxy_result=sorted([('one','one'),
('two','two'),
('one','red'),
('two','blue')
])
assert_equal(attrxy,attrxy_result)
def test_node_attribute_xy_multigraph(self):
attrxy=sorted(mixing.node_attribute_xy(self.M,'fish'))
attrxy_result=[('one','one'),
('one','one'),
('one','one'),
('one','one'),
('two','two'),
('two','two')
]
assert_equal(attrxy,attrxy_result)
def test_node_attribute_xy_selfloop(self):
attrxy=sorted(mixing.node_attribute_xy(self.S,'fish'))
attrxy_result=[('one','one'),
('two','two')
]
assert_equal(attrxy,attrxy_result)
def test_attribute_mixing_dict_undirected(self):
d=mixing.attribute_mixing_dict(self.G,'fish')
d_result={'one':{'one':2,'red':1},
'two':{'two':2,'blue':1},
'red':{'one':1},
'blue':{'two':1}
}
assert_equal(d,d_result)
def test_attribute_mixing_dict_directed(self):
d=mixing.attribute_mixing_dict(self.D,'fish')
d_result={'one':{'one':1,'red':1},
'two':{'two':1,'blue':1},
'red':{},
'blue':{}
}
assert_equal(d,d_result)
def test_attribute_mixing_dict_multigraph(self):
d=mixing.attribute_mixing_dict(self.M,'fish')
d_result={'one':{'one':4},
'two':{'two':2},
}
assert_equal(d,d_result)
class TestAttributeMixingMatrix(TestAttributeMixing):
@classmethod
def setupClass(cls):
global np
global npt
try:
import numpy as np
import numpy.testing as npt
except ImportError:
raise SkipTest('NumPy not available.')
def test_attribute_mixing_matrix_undirected(self):
mapping={'one':0,'two':1,'red':2,'blue':3}
a_result=np.array([[2,0,1,0],
[0,2,0,1],
[1,0,0,0],
[0,1,0,0]]
)
a=mixing.attribute_mixing_matrix(self.G,'fish',
mapping=mapping,
normalized=False)
npt.assert_equal(a,a_result)
a=mixing.attribute_mixing_matrix(self.G,'fish',
mapping=mapping)
npt.assert_equal(a,a_result/float(a_result.sum()))
def test_attribute_mixing_matrix_directed(self):
mapping={'one':0,'two':1,'red':2,'blue':3}
a_result=np.array([[1,0,1,0],
[0,1,0,1],
[0,0,0,0],
[0,0,0,0]]
)
a=mixing.attribute_mixing_matrix(self.D,'fish',
mapping=mapping,
normalized=False)
npt.assert_equal(a,a_result)
a=mixing.attribute_mixing_matrix(self.D,'fish',
mapping=mapping)
npt.assert_equal(a,a_result/float(a_result.sum()))
def test_attribute_mixing_matrix_multigraph(self):
mapping={'one':0,'two':1,'red':2,'blue':3}
a_result=np.array([[4,0,0,0],
[0,2,0,0],
[0,0,0,0],
[0,0,0,0]]
)
a=mixing.attribute_mixing_matrix(self.M,'fish',
mapping=mapping,
normalized=False)
npt.assert_equal(a,a_result)
a=mixing.attribute_mixing_matrix(self.M,'fish',
mapping=mapping)
npt.assert_equal(a,a_result/float(a_result.sum()))
def test_attribute_assortativity_undirected(self):
r=mixing.attribute_assortativity(self.G,'fish')
assert_equal(r,6.0/22.0)
def test_attribute_assortativity_directed(self):
r=mixing.attribute_assortativity(self.D,'fish')
assert_equal(r,1.0/3.0)
def test_attribute_assortativity_multigraph(self):
r=mixing.attribute_assortativity(self.M,'fish')
assert_equal(r,1.0)
def test_attribute_assortativity_coefficient(self):
# from "Mixing patterns in networks"
a=np.array([[0.258,0.016,0.035,0.013],
[0.012,0.157,0.058,0.019],
[0.013,0.023,0.306,0.035],
[0.005,0.007,0.024,0.016]])
r=mixing.attribute_assortativity_coefficient(a)
npt.assert_almost_equal(r,0.623,decimal=3)
def test_attribute_assortativity_coefficient(self):
a=np.array([[0.18,0.02,0.01,0.03],
[0.02,0.20,0.03,0.02],
[0.01,0.03,0.16,0.01],
[0.03,0.02,0.01,0.22]])
r=mixing.attribute_assortativity_coefficient(a)
npt.assert_almost_equal(r,0.68,decmial=2)
def test_attribute_assortativity_coefficient(self):
a=np.array([[50,50,0],[50,50,0],[0,0,2]])
r=mixing.attribute_assortativity_coefficient(a)
npt.assert_almost_equal(r,0.029,decimal=3)
|