1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
|
.. -*- coding: utf-8 -*-
.. currentmodule:: networkx
Start here to begin working with NetworkX.
Creating a graph
----------------
Create an empty graph with no nodes and no edges.
>>> import networkx as nx
>>> G=nx.Graph()
By definition, a :class:`Graph` is a collection of nodes (vertices)
along with identified pairs of nodes (called edges, links, etc).
In NetworkX, nodes can be any hashable object e.g. a text string, an
image, an XML object, another Graph, a customized node object, etc.
(Note: Python's None object should not be used as a node as it
determines whether optional function arguments have been assigned
in many functions.)
Nodes
-----
The graph G can be grown in several ways.
NetworkX includes many graph generator functions
and facilities to read and write graphs in many formats.
To get started though we'll look at simple manipulations.
You can add one node at a time,
>>> G.add_node(1)
add a list of nodes,
>>> G.add_nodes_from([2,3])
or add any :term:`nbunch` of nodes.
An *nbunch* is any iterable container
of nodes that is not itself a node
in the graph. (e.g. a list, set, graph, file, etc..)
>>> H=nx.path_graph(10)
>>> G.add_nodes_from(H)
Note that G now contains the nodes of H as nodes of G.
In contrast, you could use the graph H as a node in G.
>>> G.add_node(H)
The graph G now contains H as a node. This flexibility
is very powerful as it allows graphs of graphs, graphs of
files, graphs of functions and much more. It is worth
thinking about how to structure your application so that
the nodes are useful entities. Of course you can always
use a unique identifier in G and have a separate dictionary
keyed by identifier to the node information if you prefer.
(Note: You should not change the node object if the hash
depends on its contents.)
Edges
-----
G can also be grown by adding one edge at a time,
>>> G.add_edge(1,2)
>>> e=(2,3)
>>> G.add_edge(*e) # unpack edge tuple*
by adding a list of edges,
>>> G.add_edges_from([(1,2),(1,3)])
or by adding any :term:`ebunch` of edges.
An *ebunch* is any iterable container
of edge-tuples. An edge-tuple can be a 2-tuple
of nodes or a 3-tuple with 2 nodes followed by
an edge attribute dictionary, e.g. (2,3,{'weight':3.1415}).
Edge attributes are discussed further below
>>> G.add_edges_from(H.edges())
One can demolish the graph in a similar fashion; using
:meth:`Graph.remove_node`,
:meth:`Graph.remove_nodes_from`,
:meth:`Graph.remove_edge`
and
:meth:`Graph.remove_edges_from`, e.g.
>>> G.remove_node(H)
There are no complaints when adding existing nodes or edges. For example,
after removing all nodes and edges,
>>> G.clear()
we add new nodes/edges and NetworkX quietly ignores any that are
already present.
>>> G.add_edges_from([(1,2),(1,3)])
>>> G.add_node(1)
>>> G.add_edge(1,2)
>>> G.add_node("spam") # adds node "spam"
>>> G.add_nodes_from("spam") # adds 4 nodes: 's', 'p', 'a', 'm'
At this stage the graph G consists of 8 nodes and 2 edges, as can be seen by:
>>> G.number_of_nodes()
8
>>> G.number_of_edges()
2
We can examine them with
>>> G.nodes()
['a', 1, 2, 3, 'spam', 'm', 'p', 's']
>>> G.edges()
[(1, 2), (1, 3)]
>>> G.neighbors(1)
[2, 3]
Removing nodes or edges has similar syntax to adding:
>>> G.remove_nodes_from("spam")
>>> G.nodes()
[1, 2, 3, 'spam']
>>> G.remove_edge(1,3)
When creating a graph structure by instantiating one of the graph
classes you can specify data in several formats.
>>> H=nx.DiGraph(G) # create a DiGraph using the connections from G
>>> H.edges()
[(1, 2), (2, 1)]
>>> edgelist=[(0,1),(1,2),(2,3)]
>>> H=nx.Graph(edgelist)
What to use as nodes and edges
------------------------------
You might notice that nodes and edges are not specified as NetworkX
objects. This leaves you free to use meaningful items as nodes and
edges. The most common choices are numbers or strings, but a node can
be any hashable object (except None), and an edge can be associated
with any object x using G.add_edge(n1,n2,object=x).
As an example, n1 and n2 could be protein objects from the RCSB Protein
Data Bank, and x could refer to an XML record of publications detailing
experimental observations of their interaction.
We have found this power quite useful, but its abuse
can lead to unexpected surprises unless one is familiar with Python.
If in doubt, consider using :func:`convert_node_labels_to_integers` to obtain
a more traditional graph with integer labels.
Accessing edges
---------------
In addition to the methods
:meth:`Graph.nodes`,
:meth:`Graph.edges`, and
:meth:`Graph.neighbors`,
iterator versions (e.g. :meth:`Graph.edges_iter`) can save you from
creating large lists when you are just going to iterate
through them anyway.
Fast direct access to the graph data structure is also possible
using subscript notation.
.. Warning::
Do not change the returned dict--it is part of
the graph data structure and direct manipulation may leave the
graph in an inconsistent state.
>>> G[1] # Warning: do not change the resulting dict
{2: {}}
>>> G[1][2]
{}
You can safely set the attributes of an edge using subscript notation
if the edge already exists.
>>> G.add_edge(1,3)
>>> G[1][3]['color']='blue'
Fast examination of all edges is achieved using adjacency iterators.
Note that for undirected graphs this actually looks at each edge twice.
>>> FG=nx.Graph()
>>> FG.add_weighted_edges_from([(1,2,0.125),(1,3,0.75),(2,4,1.2),(3,4,0.375)])
>>> for n,nbrs in FG.adjacency_iter():
... for nbr,eattr in nbrs.items():
... data=eattr['weight']
... if data<0.5: print('(%d, %d, %.3f)' % (n,nbr,data))
(1, 2, 0.125)
(2, 1, 0.125)
(3, 4, 0.375)
(4, 3, 0.375)
Convenient access to all edges is achieved with the edges method.
>>> for (u,v,d) in FG.edges(data='weight'):
... if d<0.5: print('(%d, %d, %.3f)'%(n,nbr,d))
(1, 2, 0.125)
(3, 4, 0.375)
Adding attributes to graphs, nodes, and edges
---------------------------------------------
Attributes such as weights, labels, colors, or whatever
Python object you like, can be attached to graphs, nodes, or edges.
Each graph, node, and edge can hold key/value attribute pairs
in an associated attribute dictionary (the keys must be hashable).
By default these are empty, but attributes can be added or changed using
add_edge, add_node or direct manipulation of the attribute
dictionaries named G.graph, G.node and G.edge for a graph G.
Graph attributes
~~~~~~~~~~~~~~~~
Assign graph attributes when creating a new graph
>>> G = nx.Graph(day="Friday")
>>> G.graph
{'day': 'Friday'}
Or you can modify attributes later
>>> G.graph['day']='Monday'
>>> G.graph
{'day': 'Monday'}
Node attributes
~~~~~~~~~~~~~~~
Add node attributes using add_node(), add_nodes_from() or G.node
>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> G.nodes(data=True)
[(1, {'room': 714, 'time': '5pm'}), (3, {'time': '2pm'})]
Note that adding a node to G.node does not add it to the graph,
use G.add_node() to add new nodes.
Edge Attributes
~~~~~~~~~~~~~~~
Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edge.
>>> G.add_edge(1, 2, weight=4.7 )
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4
The special attribute 'weight'
should be numeric and holds values used by algorithms requiring weighted edges.
Directed graphs
---------------
The :class:`DiGraph` class provides additional methods specific to directed
edges, e.g.
:meth:`DiGraph.out_edges`,
:meth:`DiGraph.in_degree`,
:meth:`DiGraph.predecessors`,
:meth:`DiGraph.successors` etc.
To allow algorithms to work with both classes easily, the directed
versions of neighbors() and degree() are equivalent to successors()
and the sum of in_degree() and out_degree() respectively even though
that may feel inconsistent at times.
>>> DG=nx.DiGraph()
>>> DG.add_weighted_edges_from([(1,2,0.5), (3,1,0.75)])
>>> DG.out_degree(1,weight='weight')
0.5
>>> DG.degree(1,weight='weight')
1.25
>>> DG.successors(1)
[2]
>>> DG.neighbors(1)
[2]
Some algorithms work only for directed graphs and others are not well
defined for directed graphs. Indeed the tendency to lump directed
and undirected graphs together is dangerous. If you want to treat
a directed graph as undirected for some measurement you should probably
convert it using :meth:`Graph.to_undirected` or with
>>> H = nx.Graph(G) # convert G to undirected graph
Multigraphs
-----------
NetworkX provides classes for graphs which allow multiple edges
between any pair of nodes. The :class:`MultiGraph` and
:class:`MultiDiGraph`
classes allow you to add the same edge twice, possibly with different
edge data. This can be powerful for some applications, but many
algorithms are not well defined on such graphs. Shortest path is one
example. Where results are well defined,
e.g. :meth:`MultiGraph.degree` we provide the function. Otherwise you
should convert to a standard graph in a way that makes the measurement
well defined.
>>> MG=nx.MultiGraph()
>>> MG.add_weighted_edges_from([(1,2,.5), (1,2,.75), (2,3,.5)])
>>> MG.degree(weight='weight')
{1: 1.25, 2: 1.75, 3: 0.5}
>>> GG=nx.Graph()
>>> for n,nbrs in MG.adjacency_iter():
... for nbr,edict in nbrs.items():
... minvalue=min([d['weight'] for d in edict.values()])
... GG.add_edge(n,nbr, weight = minvalue)
...
>>> nx.shortest_path(GG,1,3)
[1, 2, 3]
Graph generators and graph operations
-------------------------------------
In addition to constructing graphs node-by-node or edge-by-edge, they
can also be generated by
1. Applying classic graph operations, such as::
subgraph(G, nbunch) - induce subgraph of G on nodes in nbunch
union(G1,G2) - graph union
disjoint_union(G1,G2) - graph union assuming all nodes are different
cartesian_product(G1,G2) - return Cartesian product graph
compose(G1,G2) - combine graphs identifying nodes common to both
complement(G) - graph complement
create_empty_copy(G) - return an empty copy of the same graph class
convert_to_undirected(G) - return an undirected representation of G
convert_to_directed(G) - return a directed representation of G
2. Using a call to one of the classic small graphs, e.g.
>>> petersen=nx.petersen_graph()
>>> tutte=nx.tutte_graph()
>>> maze=nx.sedgewick_maze_graph()
>>> tet=nx.tetrahedral_graph()
3. Using a (constructive) generator for a classic graph, e.g.
>>> K_5=nx.complete_graph(5)
>>> K_3_5=nx.complete_bipartite_graph(3,5)
>>> barbell=nx.barbell_graph(10,10)
>>> lollipop=nx.lollipop_graph(10,20)
4. Using a stochastic graph generator, e.g.
>>> er=nx.erdos_renyi_graph(100,0.15)
>>> ws=nx.watts_strogatz_graph(30,3,0.1)
>>> ba=nx.barabasi_albert_graph(100,5)
>>> red=nx.random_lobster(100,0.9,0.9)
5. Reading a graph stored in a file using common graph formats,
such as edge lists, adjacency lists, GML, GraphML, pickle, LEDA and others.
>>> nx.write_gml(red,"path.to.file")
>>> mygraph=nx.read_gml("path.to.file")
Details on graph formats: :doc:`/reference/readwrite`
Details on graph generator functions: :doc:`/reference/generators`
Analyzing graphs
----------------
The structure of G can be analyzed using various graph-theoretic
functions such as:
>>> G=nx.Graph()
>>> G.add_edges_from([(1,2),(1,3)])
>>> G.add_node("spam") # adds node "spam"
>>> nx.connected_components(G)
[[1, 2, 3], ['spam']]
>>> sorted(nx.degree(G).values())
[0, 1, 1, 2]
>>> nx.clustering(G)
{1: 0.0, 2: 0.0, 3: 0.0, 'spam': 0.0}
Functions that return node properties return dictionaries keyed by node label.
>>> nx.degree(G)
{1: 2, 2: 1, 3: 1, 'spam': 0}
For values of specific nodes, you can provide a single node or an nbunch
of nodes as argument. If a single node is specified, then a single value
is returned. If an nbunch is specified, then the function will
return a dictionary.
>>> nx.degree(G,1)
2
>>> G.degree(1)
2
>>> G.degree([1,2])
{1: 2, 2: 1}
>>> sorted(G.degree([1,2]).values())
[1, 2]
>>> sorted(G.degree().values())
[0, 1, 1, 2]
Details on graph algorithms supported: :doc:`/reference/algorithms`
Drawing graphs
--------------
NetworkX is not primarily a graph drawing package but
basic drawing with Matplotlib as well as an interface to use the
open source Graphviz software package are included.
These are part of the networkx.drawing package
and will be imported if possible.
See :doc:`/reference/drawing` for details.
Note that the drawing package in NetworkX is not yet compatible with
Python versions 3.0 and above.
First import Matplotlib's plot interface (pylab works too)
>>> import matplotlib.pyplot as plt
You may find it useful to interactively test code using "ipython -pylab",
which combines the power of ipython and matplotlib and provides a convenient
interactive mode.
To test if the import of networkx.drawing was successful
draw G using one of
>>> nx.draw(G)
>>> nx.draw_random(G)
>>> nx.draw_circular(G)
>>> nx.draw_spectral(G)
when drawing to an interactive display.
Note that you may need to issue a Matplotlib
>>> plt.show()
command if you are not using matplotlib in interactive mode: (See
`Matplotlib FAQ <http://matplotlib.org/faq/installing_faq.html#matplotlib-compiled-fine-but-nothing-shows-up-when-i-use-it>`_
)
To save drawings to a file, use, for example
>>> nx.draw(G)
>>> plt.savefig("path.png")
writes to the file "path.png" in the local directory. If Graphviz
and PyGraphviz, or pydotplus, are available on your system, you can also use
>>> from networkx.drawing.nx_pydot import write_dot
>>> nx.draw_graphviz(G)
>>> write_dot(G,'file.dot')
Details on drawing graphs: :doc:`/reference/drawing`
|