1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
# Test for Moody and White k-components algorithm
from nose.tools import assert_equal, assert_true, raises
import networkx as nx
from networkx.algorithms.connectivity.kcomponents import (
build_k_number_dict,
_consolidate,
)
##
## A nice synthetic graph
##
def torrents_and_ferraro_graph():
# Graph from http://arxiv.org/pdf/1503.04476v1 p.26
G = nx.convert_node_labels_to_integers(
nx.grid_graph([5, 5]),
label_attribute='labels',
)
rlabels = nx.get_node_attributes(G, 'labels')
labels = {v: k for k, v in rlabels.items()}
for nodes in [(labels[(0,4)], labels[(1,4)]),
(labels[(3,4)], labels[(4,4)])]:
new_node = G.order() + 1
# Petersen graph is triconnected
P = nx.petersen_graph()
G = nx.disjoint_union(G, P)
# Add two edges between the grid and P
G.add_edge(new_node+1, nodes[0])
G.add_edge(new_node, nodes[1])
# K5 is 4-connected
K = nx.complete_graph(5)
G = nx.disjoint_union(G, K)
# Add three edges between P and K5
G.add_edge(new_node+2, new_node+11)
G.add_edge(new_node+3, new_node+12)
G.add_edge(new_node+4, new_node+13)
# Add another K5 sharing a node
G = nx.disjoint_union(G, K)
nbrs = G[new_node+10]
G.remove_node(new_node+10)
for nbr in nbrs:
G.add_edge(new_node+17, nbr)
# This edge makes the graph biconnected; it's
# needed because K5s share only one node.
G.add_edge(new_node+16, new_node+8)
for nodes in [(labels[(0, 0)], labels[(1, 0)]),
(labels[(3, 0)], labels[(4, 0)])]:
new_node = G.order() + 1
# Petersen graph is triconnected
P = nx.petersen_graph()
G = nx.disjoint_union(G, P)
# Add two edges between the grid and P
G.add_edge(new_node+1, nodes[0])
G.add_edge(new_node, nodes[1])
# K5 is 4-connected
K = nx.complete_graph(5)
G = nx.disjoint_union(G, K)
# Add three edges between P and K5
G.add_edge(new_node+2, new_node+11)
G.add_edge(new_node+3, new_node+12)
G.add_edge(new_node+4, new_node+13)
# Add another K5 sharing two nodes
G = nx.disjoint_union(G,K)
nbrs = G[new_node+10]
G.remove_node(new_node+10)
for nbr in nbrs:
G.add_edge(new_node+17, nbr)
nbrs2 = G[new_node+9]
G.remove_node(new_node+9)
for nbr in nbrs2:
G.add_edge(new_node+18, nbr)
G.name = 'Example graph for connectivity'
return G
@raises(nx.NetworkXNotImplemented)
def test_directed():
G = nx.gnp_random_graph(10, 0.2, directed=True)
nx.k_components(G)
# Helper function
def _check_connectivity(G):
result = nx.k_components(G)
for k, components in result.items():
if k < 3:
continue
for component in components:
C = G.subgraph(component)
assert_true(nx.node_connectivity(C) >= k)
def test_torrents_and_ferraro_graph():
G = torrents_and_ferraro_graph()
_check_connectivity(G)
def test_random_gnp():
G = nx.gnp_random_graph(50, 0.2)
_check_connectivity(G)
def test_shell():
constructor=[(20, 80, 0.8), (80, 180, 0.6)]
G = nx.random_shell_graph(constructor)
_check_connectivity(G)
def test_configuration():
deg_seq = nx.utils.create_degree_sequence(100, nx.utils.powerlaw_sequence)
G = nx.Graph(nx.configuration_model(deg_seq))
G.remove_edges_from(G.selfloop_edges())
_check_connectivity(G)
def test_karate():
G = nx.karate_club_graph()
_check_connectivity(G)
def test_karate_component_number():
karate_k_num = {
0: 4, 1: 4, 2: 4, 3: 4, 4: 3, 5: 3, 6: 3, 7: 4, 8: 4, 9: 2,
10: 3, 11: 1, 12: 2, 13: 4, 14: 2, 15: 2, 16: 2, 17: 2,
18: 2, 19: 3, 20: 2, 21: 2, 22: 2, 23: 3, 24: 3, 25: 3,
26: 2, 27: 3, 28: 3, 29: 3, 30: 4, 31: 3, 32: 4, 33: 4
}
G = nx.karate_club_graph()
k_components = nx.k_components(G)
k_num = build_k_number_dict(k_components)
assert_equal(karate_k_num, k_num)
def test_torrents_and_ferraro_detail_3_and_4():
solution = {
3: [{25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42},
{44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 61},
{63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 79, 80},
{81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 95, 99, 100},
{39, 40, 41, 42, 43},
{58, 59, 60, 61, 62},
{76, 77, 78, 79, 80},
{96, 97, 98, 99, 100},
],
4: [{35, 36, 37, 38, 42},
{39, 40, 41, 42, 43},
{54, 55, 56, 57, 61},
{58, 59, 60, 61, 62},
{73, 74, 75, 79, 80},
{76, 77, 78, 79, 80},
{93, 94, 95, 99, 100},
{96, 97, 98, 99, 100},
],
}
G = torrents_and_ferraro_graph()
result = nx.k_components(G)
for k, components in result.items():
if k < 3:
continue
assert_true(len(components) == len(solution[k]))
for component in components:
assert_true(component in solution[k])
def test_davis_southern_women():
G = nx.davis_southern_women_graph()
_check_connectivity(G)
def test_davis_southern_women_detail_3_and_4():
solution = {
3: [{
'Nora Fayette',
'E10',
'Myra Liddel',
'E12',
'E14',
'Frances Anderson',
'Evelyn Jefferson',
'Ruth DeSand',
'Helen Lloyd',
'Eleanor Nye',
'E9',
'E8',
'E5',
'E4',
'E7',
'E6',
'E1',
'Verne Sanderson',
'E3',
'E2',
'Theresa Anderson',
'Pearl Oglethorpe',
'Katherina Rogers',
'Brenda Rogers',
'E13',
'Charlotte McDowd',
'Sylvia Avondale',
'Laura Mandeville',
},
],
4: [{
'Nora Fayette',
'E10',
'Verne Sanderson',
'E12',
'Frances Anderson',
'Evelyn Jefferson',
'Ruth DeSand',
'Helen Lloyd',
'Eleanor Nye',
'E9',
'E8',
'E5',
'E4',
'E7',
'E6',
'Myra Liddel',
'E3',
'Theresa Anderson',
'Katherina Rogers',
'Brenda Rogers',
'Charlotte McDowd',
'Sylvia Avondale',
'Laura Mandeville',
},
],
}
G = nx.davis_southern_women_graph()
result = nx.k_components(G)
for k, components in result.items():
if k < 3:
continue
assert_true(len(components) == len(solution[k]))
for component in components:
assert_true(component in solution[k])
def test_set_consolidation_rosettacode():
# Tests from http://rosettacode.org/wiki/Set_consolidation
def list_of_sets_equal(result, solution):
assert_equal(
{frozenset(s) for s in result},
{frozenset(s) for s in solution}
)
question = [{'A', 'B'}, {'C', 'D'}]
solution = [{'A', 'B'}, {'C', 'D'}]
list_of_sets_equal(_consolidate(question, 1), solution)
question = [{'A', 'B'}, {'B', 'C'}]
solution = [{'A', 'B', 'C'}]
list_of_sets_equal(_consolidate(question, 1), solution)
question = [{'A', 'B'}, {'C', 'D'}, {'D', 'B'}]
solution = [{'A', 'C', 'B', 'D'}]
list_of_sets_equal(_consolidate(question, 1), solution)
question = [{'H', 'I', 'K'}, {'A', 'B'}, {'C', 'D'}, {'D', 'B'}, {'F', 'G', 'H'}]
solution = [{'A', 'C', 'B', 'D'}, {'G', 'F', 'I', 'H', 'K'}]
list_of_sets_equal(_consolidate(question, 1), solution)
question = [{'A','H'}, {'H','I','K'}, {'A','B'}, {'C','D'}, {'D','B'}, {'F','G','H'}]
solution = [{'A', 'C', 'B', 'D', 'G', 'F', 'I', 'H', 'K'}]
list_of_sets_equal(_consolidate(question, 1), solution)
question = [{'H','I','K'}, {'A','B'}, {'C','D'}, {'D','B'}, {'F','G','H'}, {'A','H'}]
solution = [{'A', 'C', 'B', 'D', 'G', 'F', 'I', 'H', 'K'}]
list_of_sets_equal(_consolidate(question, 1), solution)
|