File: dag.py

package info (click to toggle)
python-networkx 1.11-1~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 5,856 kB
  • sloc: python: 59,463; makefile: 159
file content (457 lines) | stat: -rw-r--r-- 12,004 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# -*- coding: utf-8 -*-
from fractions import gcd
import networkx as nx
from networkx.utils.decorators import *
"""Algorithms for directed acyclic graphs (DAGs)."""
#    Copyright (C) 2006-2011 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
__author__ = """\n""".join(['Aric Hagberg <aric.hagberg@gmail.com>',
                            'Dan Schult (dschult@colgate.edu)',
                            'Ben Edwards (bedwards@cs.unm.edu)'])
__all__ = ['descendants',
           'ancestors',
           'topological_sort',
           'topological_sort_recursive',
           'is_directed_acyclic_graph',
           'is_aperiodic',
           'transitive_closure',
           'antichains',
           'dag_longest_path',
           'dag_longest_path_length']


def descendants(G, source):
    """Return all nodes reachable from `source` in G.

    Parameters
    ----------
    G : NetworkX DiGraph
    source : node in G

    Returns
    -------
    des : set()
        The descendants of source in G
    """
    if not G.has_node(source):
        raise nx.NetworkXError("The node %s is not in the graph." % source)
    des = set(nx.shortest_path_length(G, source=source).keys()) - set([source])
    return des


def ancestors(G, source):
    """Return all nodes having a path to `source` in G.

    Parameters
    ----------
    G : NetworkX DiGraph
    source : node in G

    Returns
    -------
    ancestors : set()
        The ancestors of source in G
    """
    if not G.has_node(source):
        raise nx.NetworkXError("The node %s is not in the graph." % source)
    anc = set(nx.shortest_path_length(G, target=source).keys()) - set([source])
    return anc


def is_directed_acyclic_graph(G):
    """Return True if the graph G is a directed acyclic graph (DAG) or 
    False if not.

    Parameters
    ----------
    G : NetworkX graph
        A graph

    Returns
    -------
    is_dag : bool
        True if G is a DAG, false otherwise
    """
    if not G.is_directed():
        return False
    try:
        topological_sort(G, reverse=True)
        return True
    except nx.NetworkXUnfeasible:
        return False


def topological_sort(G, nbunch=None, reverse=False):
    """Return a list of nodes in topological sort order.

    A topological sort is a nonunique permutation of the nodes
    such that an edge from u to v implies that u appears before v in the
    topological sort order.

    Parameters
    ----------
    G : NetworkX digraph
        A directed graph

    nbunch : container of nodes (optional)
        Explore graph in specified order given in nbunch

    reverse : bool, optional
        Return postorder instead of preorder if True.
        Reverse mode is a bit more efficient.

    Raises
    ------
    NetworkXError
        Topological sort is defined for directed graphs only. If the
        graph G is undirected, a NetworkXError is raised.

    NetworkXUnfeasible
        If G is not a directed acyclic graph (DAG) no topological sort
        exists and a NetworkXUnfeasible exception is raised.

    Notes
    -----
    This algorithm is based on a description and proof in
    The Algorithm Design Manual [1]_ .

    See also
    --------
    is_directed_acyclic_graph

    References
    ----------
    .. [1] Skiena, S. S. The Algorithm Design Manual  (Springer-Verlag, 1998). 
        http://www.amazon.com/exec/obidos/ASIN/0387948600/ref=ase_thealgorithmrepo/
    """
    if not G.is_directed():
        raise nx.NetworkXError(
            "Topological sort not defined on undirected graphs.")

    # nonrecursive version
    seen = set()
    order = []
    explored = set()

    if nbunch is None:
        nbunch = G.nodes_iter()
    for v in nbunch:     # process all vertices in G
        if v in explored:
            continue
        fringe = [v]   # nodes yet to look at
        while fringe:
            w = fringe[-1]  # depth first search
            if w in explored:  # already looked down this branch
                fringe.pop()
                continue
            seen.add(w)     # mark as seen
            # Check successors for cycles and for new nodes
            new_nodes = []
            for n in G[w]:
                if n not in explored:
                    if n in seen:  # CYCLE !!
                        raise nx.NetworkXUnfeasible("Graph contains a cycle.")
                    new_nodes.append(n)
            if new_nodes:   # Add new_nodes to fringe
                fringe.extend(new_nodes)
            else:           # No new nodes so w is fully explored
                explored.add(w)
                order.append(w)
                fringe.pop()    # done considering this node
    if reverse:
        return order
    else:
        return list(reversed(order))


def topological_sort_recursive(G, nbunch=None, reverse=False):
    """Return a list of nodes in topological sort order.

    A topological sort is a nonunique permutation of the nodes such
    that an edge from u to v implies that u appears before v in the
    topological sort order.

    Parameters
    ----------
    G : NetworkX digraph

    nbunch : container of nodes (optional)
        Explore graph in specified order given in nbunch

    reverse : bool, optional
        Return postorder instead of preorder if True.
        Reverse mode is a bit more efficient.

    Raises
    ------
    NetworkXError
        Topological sort is defined for directed graphs only. If the
        graph G is undirected, a NetworkXError is raised.

    NetworkXUnfeasible
        If G is not a directed acyclic graph (DAG) no topological sort
        exists and a NetworkXUnfeasible exception is raised.

    Notes
    -----
    This is a recursive version of topological sort.

    See also
    --------
    topological_sort
    is_directed_acyclic_graph

    """
    if not G.is_directed():
        raise nx.NetworkXError(
            "Topological sort not defined on undirected graphs.")

    def _dfs(v):
        ancestors.add(v)

        for w in G[v]:
            if w in ancestors:
                raise nx.NetworkXUnfeasible("Graph contains a cycle.")

            if w not in explored:
                _dfs(w)

        ancestors.remove(v)
        explored.add(v)
        order.append(v)

    ancestors = set()
    explored = set()
    order = []

    if nbunch is None:
        nbunch = G.nodes_iter()

    for v in nbunch:
        if v not in explored:
            _dfs(v)

    if reverse:
        return order
    else:
        return list(reversed(order))


def is_aperiodic(G):
    """Return True if G is aperiodic.

    A directed graph is aperiodic if there is no integer k > 1 that 
    divides the length of every cycle in the graph.

    Parameters
    ----------
    G : NetworkX DiGraph
        Graph

    Returns
    -------
    aperiodic : boolean
        True if the graph is aperiodic False otherwise

    Raises
    ------
    NetworkXError
        If G is not directed

    Notes
    -----
    This uses the method outlined in [1]_, which runs in O(m) time
    given m edges in G. Note that a graph is not aperiodic if it is
    acyclic as every integer trivial divides length 0 cycles.

    References
    ----------
    .. [1] Jarvis, J. P.; Shier, D. R. (1996),
       Graph-theoretic analysis of finite Markov chains,
       in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling:
       A Multidisciplinary Approach, CRC Press.
    """
    if not G.is_directed():
        raise nx.NetworkXError(
            "is_aperiodic not defined for undirected graphs")

    s = next(G.nodes_iter())
    levels = {s: 0}
    this_level = [s]
    g = 0
    l = 1
    while this_level:
        next_level = []
        for u in this_level:
            for v in G[u]:
                if v in levels:  # Non-Tree Edge
                    g = gcd(g, levels[u] - levels[v] + 1)
                else:  # Tree Edge
                    next_level.append(v)
                    levels[v] = l
        this_level = next_level
        l += 1
    if len(levels) == len(G):  # All nodes in tree
        return g == 1
    else:
        return g == 1 and nx.is_aperiodic(G.subgraph(set(G) - set(levels)))


@not_implemented_for('undirected')
def transitive_closure(G):
    """ Returns transitive closure of a directed graph

    The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that
    for all v,w in V there is an edge (v,w) in E+ if and only if there
    is a non-null path from v to w in G.

    Parameters
    ----------
    G : NetworkX DiGraph
        Graph

    Returns
    -------
    TC : NetworkX DiGraph
        Graph

    Raises
    ------
    NetworkXNotImplemented
        If G is not directed

    References
    ----------
    .. [1] http://www.ics.uci.edu/~eppstein/PADS/PartialOrder.py

    """
    TC = nx.DiGraph()
    TC.add_nodes_from(G.nodes_iter())
    TC.add_edges_from(G.edges_iter())
    for v in G:
        TC.add_edges_from((v, u) for u in nx.dfs_preorder_nodes(G, source=v)
                          if v != u)
    return TC


@not_implemented_for('undirected')
def antichains(G):
    """Generates antichains from a DAG.

    An antichain is a subset of a partially ordered set such that any
    two elements in the subset are incomparable.

    Parameters
    ----------
    G : NetworkX DiGraph
        Graph

    Returns
    -------
    antichain : generator object

    Raises
    ------
    NetworkXNotImplemented
        If G is not directed

    NetworkXUnfeasible
        If G contains a cycle

    Notes
    -----
    This function was originally developed by Peter Jipsen and Franco Saliola
    for the SAGE project. It's included in NetworkX with permission from the
    authors. Original SAGE code at:

    https://sage.informatik.uni-goettingen.de/src/combinat/posets/hasse_diagram.py

    References
    ----------
    .. [1] Free Lattices, by R. Freese, J. Jezek and J. B. Nation,
       AMS, Vol 42, 1995, p. 226.
    """
    TC = nx.transitive_closure(G)
    antichains_stacks = [([], nx.topological_sort(G, reverse=True))]
    while antichains_stacks:
        (antichain, stack) = antichains_stacks.pop()
        # Invariant:
        #  - the elements of antichain are independent
        #  - the elements of stack are independent from those of antichain
        yield antichain
        while stack:
            x = stack.pop()
            new_antichain = antichain + [x]
            new_stack = [
                t for t in stack if not ((t in TC[x]) or (x in TC[t]))]
            antichains_stacks.append((new_antichain, new_stack))


@not_implemented_for('undirected')
def dag_longest_path(G):
    """Returns the longest path in a DAG

    Parameters
    ----------
    G : NetworkX DiGraph
        Graph

    Returns
    -------
    path : list
        Longest path

    Raises
    ------
    NetworkXNotImplemented
        If G is not directed

    See also
    --------
    dag_longest_path_length
    """
    dist = {}  # stores [node, distance] pair
    for node in nx.topological_sort(G):
        # pairs of dist,node for all incoming edges
        pairs = [(dist[v][0] + 1, v) for v in G.pred[node]]
        if pairs:
            dist[node] = max(pairs)
        else:
            dist[node] = (0, node)
    node, (length, _) = max(dist.items(), key=lambda x: x[1])
    path = []
    while length > 0:
        path.append(node)
        length, node = dist[node]
    return list(reversed(path))


@not_implemented_for('undirected')
def dag_longest_path_length(G):
    """Returns the longest path length in a DAG

    Parameters
    ----------
    G : NetworkX DiGraph
        Graph

    Returns
    -------
    path_length : int
        Longest path length

    Raises
    ------
    NetworkXNotImplemented
        If G is not directed

    See also
    --------
    dag_longest_path
    """
    path_length = len(nx.dag_longest_path(G)) - 1
    return path_length