1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
# -*- coding: utf-8 -*-
from fractions import gcd
import networkx as nx
from networkx.utils.decorators import *
"""Algorithms for directed acyclic graphs (DAGs)."""
# Copyright (C) 2006-2011 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
__author__ = """\n""".join(['Aric Hagberg <aric.hagberg@gmail.com>',
'Dan Schult (dschult@colgate.edu)',
'Ben Edwards (bedwards@cs.unm.edu)'])
__all__ = ['descendants',
'ancestors',
'topological_sort',
'topological_sort_recursive',
'is_directed_acyclic_graph',
'is_aperiodic',
'transitive_closure',
'antichains',
'dag_longest_path',
'dag_longest_path_length']
def descendants(G, source):
"""Return all nodes reachable from `source` in G.
Parameters
----------
G : NetworkX DiGraph
source : node in G
Returns
-------
des : set()
The descendants of source in G
"""
if not G.has_node(source):
raise nx.NetworkXError("The node %s is not in the graph." % source)
des = set(nx.shortest_path_length(G, source=source).keys()) - set([source])
return des
def ancestors(G, source):
"""Return all nodes having a path to `source` in G.
Parameters
----------
G : NetworkX DiGraph
source : node in G
Returns
-------
ancestors : set()
The ancestors of source in G
"""
if not G.has_node(source):
raise nx.NetworkXError("The node %s is not in the graph." % source)
anc = set(nx.shortest_path_length(G, target=source).keys()) - set([source])
return anc
def is_directed_acyclic_graph(G):
"""Return True if the graph G is a directed acyclic graph (DAG) or
False if not.
Parameters
----------
G : NetworkX graph
A graph
Returns
-------
is_dag : bool
True if G is a DAG, false otherwise
"""
if not G.is_directed():
return False
try:
topological_sort(G, reverse=True)
return True
except nx.NetworkXUnfeasible:
return False
def topological_sort(G, nbunch=None, reverse=False):
"""Return a list of nodes in topological sort order.
A topological sort is a nonunique permutation of the nodes
such that an edge from u to v implies that u appears before v in the
topological sort order.
Parameters
----------
G : NetworkX digraph
A directed graph
nbunch : container of nodes (optional)
Explore graph in specified order given in nbunch
reverse : bool, optional
Return postorder instead of preorder if True.
Reverse mode is a bit more efficient.
Raises
------
NetworkXError
Topological sort is defined for directed graphs only. If the
graph G is undirected, a NetworkXError is raised.
NetworkXUnfeasible
If G is not a directed acyclic graph (DAG) no topological sort
exists and a NetworkXUnfeasible exception is raised.
Notes
-----
This algorithm is based on a description and proof in
The Algorithm Design Manual [1]_ .
See also
--------
is_directed_acyclic_graph
References
----------
.. [1] Skiena, S. S. The Algorithm Design Manual (Springer-Verlag, 1998).
http://www.amazon.com/exec/obidos/ASIN/0387948600/ref=ase_thealgorithmrepo/
"""
if not G.is_directed():
raise nx.NetworkXError(
"Topological sort not defined on undirected graphs.")
# nonrecursive version
seen = set()
order = []
explored = set()
if nbunch is None:
nbunch = G.nodes_iter()
for v in nbunch: # process all vertices in G
if v in explored:
continue
fringe = [v] # nodes yet to look at
while fringe:
w = fringe[-1] # depth first search
if w in explored: # already looked down this branch
fringe.pop()
continue
seen.add(w) # mark as seen
# Check successors for cycles and for new nodes
new_nodes = []
for n in G[w]:
if n not in explored:
if n in seen: # CYCLE !!
raise nx.NetworkXUnfeasible("Graph contains a cycle.")
new_nodes.append(n)
if new_nodes: # Add new_nodes to fringe
fringe.extend(new_nodes)
else: # No new nodes so w is fully explored
explored.add(w)
order.append(w)
fringe.pop() # done considering this node
if reverse:
return order
else:
return list(reversed(order))
def topological_sort_recursive(G, nbunch=None, reverse=False):
"""Return a list of nodes in topological sort order.
A topological sort is a nonunique permutation of the nodes such
that an edge from u to v implies that u appears before v in the
topological sort order.
Parameters
----------
G : NetworkX digraph
nbunch : container of nodes (optional)
Explore graph in specified order given in nbunch
reverse : bool, optional
Return postorder instead of preorder if True.
Reverse mode is a bit more efficient.
Raises
------
NetworkXError
Topological sort is defined for directed graphs only. If the
graph G is undirected, a NetworkXError is raised.
NetworkXUnfeasible
If G is not a directed acyclic graph (DAG) no topological sort
exists and a NetworkXUnfeasible exception is raised.
Notes
-----
This is a recursive version of topological sort.
See also
--------
topological_sort
is_directed_acyclic_graph
"""
if not G.is_directed():
raise nx.NetworkXError(
"Topological sort not defined on undirected graphs.")
def _dfs(v):
ancestors.add(v)
for w in G[v]:
if w in ancestors:
raise nx.NetworkXUnfeasible("Graph contains a cycle.")
if w not in explored:
_dfs(w)
ancestors.remove(v)
explored.add(v)
order.append(v)
ancestors = set()
explored = set()
order = []
if nbunch is None:
nbunch = G.nodes_iter()
for v in nbunch:
if v not in explored:
_dfs(v)
if reverse:
return order
else:
return list(reversed(order))
def is_aperiodic(G):
"""Return True if G is aperiodic.
A directed graph is aperiodic if there is no integer k > 1 that
divides the length of every cycle in the graph.
Parameters
----------
G : NetworkX DiGraph
Graph
Returns
-------
aperiodic : boolean
True if the graph is aperiodic False otherwise
Raises
------
NetworkXError
If G is not directed
Notes
-----
This uses the method outlined in [1]_, which runs in O(m) time
given m edges in G. Note that a graph is not aperiodic if it is
acyclic as every integer trivial divides length 0 cycles.
References
----------
.. [1] Jarvis, J. P.; Shier, D. R. (1996),
Graph-theoretic analysis of finite Markov chains,
in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling:
A Multidisciplinary Approach, CRC Press.
"""
if not G.is_directed():
raise nx.NetworkXError(
"is_aperiodic not defined for undirected graphs")
s = next(G.nodes_iter())
levels = {s: 0}
this_level = [s]
g = 0
l = 1
while this_level:
next_level = []
for u in this_level:
for v in G[u]:
if v in levels: # Non-Tree Edge
g = gcd(g, levels[u] - levels[v] + 1)
else: # Tree Edge
next_level.append(v)
levels[v] = l
this_level = next_level
l += 1
if len(levels) == len(G): # All nodes in tree
return g == 1
else:
return g == 1 and nx.is_aperiodic(G.subgraph(set(G) - set(levels)))
@not_implemented_for('undirected')
def transitive_closure(G):
""" Returns transitive closure of a directed graph
The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that
for all v,w in V there is an edge (v,w) in E+ if and only if there
is a non-null path from v to w in G.
Parameters
----------
G : NetworkX DiGraph
Graph
Returns
-------
TC : NetworkX DiGraph
Graph
Raises
------
NetworkXNotImplemented
If G is not directed
References
----------
.. [1] http://www.ics.uci.edu/~eppstein/PADS/PartialOrder.py
"""
TC = nx.DiGraph()
TC.add_nodes_from(G.nodes_iter())
TC.add_edges_from(G.edges_iter())
for v in G:
TC.add_edges_from((v, u) for u in nx.dfs_preorder_nodes(G, source=v)
if v != u)
return TC
@not_implemented_for('undirected')
def antichains(G):
"""Generates antichains from a DAG.
An antichain is a subset of a partially ordered set such that any
two elements in the subset are incomparable.
Parameters
----------
G : NetworkX DiGraph
Graph
Returns
-------
antichain : generator object
Raises
------
NetworkXNotImplemented
If G is not directed
NetworkXUnfeasible
If G contains a cycle
Notes
-----
This function was originally developed by Peter Jipsen and Franco Saliola
for the SAGE project. It's included in NetworkX with permission from the
authors. Original SAGE code at:
https://sage.informatik.uni-goettingen.de/src/combinat/posets/hasse_diagram.py
References
----------
.. [1] Free Lattices, by R. Freese, J. Jezek and J. B. Nation,
AMS, Vol 42, 1995, p. 226.
"""
TC = nx.transitive_closure(G)
antichains_stacks = [([], nx.topological_sort(G, reverse=True))]
while antichains_stacks:
(antichain, stack) = antichains_stacks.pop()
# Invariant:
# - the elements of antichain are independent
# - the elements of stack are independent from those of antichain
yield antichain
while stack:
x = stack.pop()
new_antichain = antichain + [x]
new_stack = [
t for t in stack if not ((t in TC[x]) or (x in TC[t]))]
antichains_stacks.append((new_antichain, new_stack))
@not_implemented_for('undirected')
def dag_longest_path(G):
"""Returns the longest path in a DAG
Parameters
----------
G : NetworkX DiGraph
Graph
Returns
-------
path : list
Longest path
Raises
------
NetworkXNotImplemented
If G is not directed
See also
--------
dag_longest_path_length
"""
dist = {} # stores [node, distance] pair
for node in nx.topological_sort(G):
# pairs of dist,node for all incoming edges
pairs = [(dist[v][0] + 1, v) for v in G.pred[node]]
if pairs:
dist[node] = max(pairs)
else:
dist[node] = (0, node)
node, (length, _) = max(dist.items(), key=lambda x: x[1])
path = []
while length > 0:
path.append(node)
length, node = dist[node]
return list(reversed(path))
@not_implemented_for('undirected')
def dag_longest_path_length(G):
"""Returns the longest path length in a DAG
Parameters
----------
G : NetworkX DiGraph
Graph
Returns
-------
path_length : int
Longest path length
Raises
------
NetworkXNotImplemented
If G is not directed
See also
--------
dag_longest_path
"""
path_length = len(nx.dag_longest_path(G)) - 1
return path_length
|