File: test_random_graphs.py

package info (click to toggle)
python-networkx 1.11-1~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 5,856 kB
  • sloc: python: 59,463; makefile: 159
file content (137 lines) | stat: -rwxr-xr-x 4,702 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python
from nose.tools import *
from networkx import *
from networkx.generators.random_graphs import *

class TestGeneratorsRandom():
    def smoke_test_random_graph(self):
        seed = 42
        G=gnp_random_graph(100,0.25,seed)
        G=binomial_graph(100,0.25,seed)
        G=erdos_renyi_graph(100,0.25,seed)
        G=fast_gnp_random_graph(100,0.25,seed)
        G=gnm_random_graph(100,20,seed)
        G=dense_gnm_random_graph(100,20,seed)

        G=watts_strogatz_graph(10,2,0.25,seed)
        assert_equal(len(G), 10)
        assert_equal(G.number_of_edges(), 10)

        G=connected_watts_strogatz_graph(10,2,0.1,seed)
        assert_equal(len(G), 10)
        assert_equal(G.number_of_edges(), 10)

        G=watts_strogatz_graph(10,4,0.25,seed)
        assert_equal(len(G), 10)
        assert_equal(G.number_of_edges(), 20)

        G=newman_watts_strogatz_graph(10,2,0.0,seed)
        assert_equal(len(G), 10)
        assert_equal(G.number_of_edges(), 10)

        G=newman_watts_strogatz_graph(10,4,0.25,seed)
        assert_equal(len(G), 10)
        assert_true(G.number_of_edges() >= 20)

        G=barabasi_albert_graph(100,1,seed)
        G=barabasi_albert_graph(100,3,seed)
        assert_equal(G.number_of_edges(),(97*3))

        G=powerlaw_cluster_graph(100,1,1.0,seed)
        G=powerlaw_cluster_graph(100,3,0.0,seed)
        assert_equal(G.number_of_edges(),(97*3))

        G=duplication_divergence_graph(100,1.0,seed)
        assert_equal(len(G), 100)
        assert_raises(networkx.exception.NetworkXError,
                      duplication_divergence_graph, 100, 2)
        assert_raises(networkx.exception.NetworkXError,
                      duplication_divergence_graph, 100, -1)

        G=random_regular_graph(10,20,seed)

        assert_raises(networkx.exception.NetworkXError,
                      random_regular_graph, 3, 21)

        constructor=[(10,20,0.8),(20,40,0.8)]
        G=random_shell_graph(constructor,seed)

        G=nx.random_lobster(10,0.1,0.5,seed)

    def test_random_zero_regular_graph(self):
        """Tests that a 0-regular graph has the correct number of nodes and
        edges.

        """
        G = random_regular_graph(0, 10)
        assert_equal(len(G), 10)
        assert_equal(len(G.edges()), 0)

    def test_gnp(self):
        for generator in [gnp_random_graph, binomial_graph, erdos_renyi_graph,
                          fast_gnp_random_graph]:
            G = generator(10, -1.1)
            assert_equal(len(G), 10)
            assert_equal(len(G.edges()), 0)

            G = generator(10, 0.1)
            assert_equal(len(G), 10)

            G = generator(10, 0.1, seed=42)
            assert_equal(len(G), 10)

            G = generator(10, 1.1)
            assert_equal(len(G), 10)
            assert_equal(len(G.edges()), 45)

            G = generator(10, -1.1, directed=True)
            assert_true(G.is_directed())
            assert_equal(len(G), 10)
            assert_equal(len(G.edges()), 0)

            G = generator(10, 0.1, directed=True)
            assert_true(G.is_directed())
            assert_equal(len(G), 10)

            G = generator(10, 1.1, directed=True)
            assert_true(G.is_directed())
            assert_equal(len(G), 10)
            assert_equal(len(G.edges()), 90)

            # assert that random graphs generate all edges for p close to 1
            edges = 0
            runs = 100
            for i in range(runs):
                edges += len(generator(10, 0.99999, directed=True).edges())
            assert_almost_equal(edges/float(runs), 90, delta=runs*2.0/100)

    def test_gnm(self):
        G=gnm_random_graph(10,3)
        assert_equal(len(G),10)
        assert_equal(len(G.edges()),3)

        G=gnm_random_graph(10,3,seed=42)
        assert_equal(len(G),10)
        assert_equal(len(G.edges()),3)

        G=gnm_random_graph(10,100)
        assert_equal(len(G),10)
        assert_equal(len(G.edges()),45)

        G=gnm_random_graph(10,100,directed=True)
        assert_equal(len(G),10)
        assert_equal(len(G.edges()),90)

        G=gnm_random_graph(10,-1.1)
        assert_equal(len(G),10)
        assert_equal(len(G.edges()),0)

    def test_watts_strogatz_big_k(self):
        assert_raises(networkx.exception.NetworkXError,
                watts_strogatz_graph, 10, 10, 0.25)
        assert_raises(networkx.exception.NetworkXError,
                newman_watts_strogatz_graph, 10, 10, 0.25)
        # could create an infinite loop, now doesn't
        # infinite loop used to occur when a node has degree n-1 and needs to rewire
        watts_strogatz_graph(10, 9, 0.25, seed=0)
        newman_watts_strogatz_graph(10, 9, 0.5, seed=0)