1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
#!/usr/bin/env python
from nose.tools import *
from networkx import *
from networkx.generators.random_graphs import *
class TestGeneratorsRandom():
def smoke_test_random_graph(self):
seed = 42
G=gnp_random_graph(100,0.25,seed)
G=binomial_graph(100,0.25,seed)
G=erdos_renyi_graph(100,0.25,seed)
G=fast_gnp_random_graph(100,0.25,seed)
G=gnm_random_graph(100,20,seed)
G=dense_gnm_random_graph(100,20,seed)
G=watts_strogatz_graph(10,2,0.25,seed)
assert_equal(len(G), 10)
assert_equal(G.number_of_edges(), 10)
G=connected_watts_strogatz_graph(10,2,0.1,seed)
assert_equal(len(G), 10)
assert_equal(G.number_of_edges(), 10)
G=watts_strogatz_graph(10,4,0.25,seed)
assert_equal(len(G), 10)
assert_equal(G.number_of_edges(), 20)
G=newman_watts_strogatz_graph(10,2,0.0,seed)
assert_equal(len(G), 10)
assert_equal(G.number_of_edges(), 10)
G=newman_watts_strogatz_graph(10,4,0.25,seed)
assert_equal(len(G), 10)
assert_true(G.number_of_edges() >= 20)
G=barabasi_albert_graph(100,1,seed)
G=barabasi_albert_graph(100,3,seed)
assert_equal(G.number_of_edges(),(97*3))
G=powerlaw_cluster_graph(100,1,1.0,seed)
G=powerlaw_cluster_graph(100,3,0.0,seed)
assert_equal(G.number_of_edges(),(97*3))
G=duplication_divergence_graph(100,1.0,seed)
assert_equal(len(G), 100)
assert_raises(networkx.exception.NetworkXError,
duplication_divergence_graph, 100, 2)
assert_raises(networkx.exception.NetworkXError,
duplication_divergence_graph, 100, -1)
G=random_regular_graph(10,20,seed)
assert_raises(networkx.exception.NetworkXError,
random_regular_graph, 3, 21)
constructor=[(10,20,0.8),(20,40,0.8)]
G=random_shell_graph(constructor,seed)
G=nx.random_lobster(10,0.1,0.5,seed)
def test_random_zero_regular_graph(self):
"""Tests that a 0-regular graph has the correct number of nodes and
edges.
"""
G = random_regular_graph(0, 10)
assert_equal(len(G), 10)
assert_equal(len(G.edges()), 0)
def test_gnp(self):
for generator in [gnp_random_graph, binomial_graph, erdos_renyi_graph,
fast_gnp_random_graph]:
G = generator(10, -1.1)
assert_equal(len(G), 10)
assert_equal(len(G.edges()), 0)
G = generator(10, 0.1)
assert_equal(len(G), 10)
G = generator(10, 0.1, seed=42)
assert_equal(len(G), 10)
G = generator(10, 1.1)
assert_equal(len(G), 10)
assert_equal(len(G.edges()), 45)
G = generator(10, -1.1, directed=True)
assert_true(G.is_directed())
assert_equal(len(G), 10)
assert_equal(len(G.edges()), 0)
G = generator(10, 0.1, directed=True)
assert_true(G.is_directed())
assert_equal(len(G), 10)
G = generator(10, 1.1, directed=True)
assert_true(G.is_directed())
assert_equal(len(G), 10)
assert_equal(len(G.edges()), 90)
# assert that random graphs generate all edges for p close to 1
edges = 0
runs = 100
for i in range(runs):
edges += len(generator(10, 0.99999, directed=True).edges())
assert_almost_equal(edges/float(runs), 90, delta=runs*2.0/100)
def test_gnm(self):
G=gnm_random_graph(10,3)
assert_equal(len(G),10)
assert_equal(len(G.edges()),3)
G=gnm_random_graph(10,3,seed=42)
assert_equal(len(G),10)
assert_equal(len(G.edges()),3)
G=gnm_random_graph(10,100)
assert_equal(len(G),10)
assert_equal(len(G.edges()),45)
G=gnm_random_graph(10,100,directed=True)
assert_equal(len(G),10)
assert_equal(len(G.edges()),90)
G=gnm_random_graph(10,-1.1)
assert_equal(len(G),10)
assert_equal(len(G.edges()),0)
def test_watts_strogatz_big_k(self):
assert_raises(networkx.exception.NetworkXError,
watts_strogatz_graph, 10, 10, 0.25)
assert_raises(networkx.exception.NetworkXError,
newman_watts_strogatz_graph, 10, 10, 0.25)
# could create an infinite loop, now doesn't
# infinite loop used to occur when a node has degree n-1 and needs to rewire
watts_strogatz_graph(10, 9, 0.25, seed=0)
newman_watts_strogatz_graph(10, 9, 0.5, seed=0)
|