1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
"""Modularity matrix of graphs.
"""
# Copyright (C) 2004-2015 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
from __future__ import division
import networkx as nx
from networkx.utils import not_implemented_for
__author__ = "\n".join(['Aric Hagberg <aric.hagberg@gmail.com>',
'Pieter Swart (swart@lanl.gov)',
'Dan Schult (dschult@colgate.edu)',
'Jean-Gabriel Young (Jean.gabriel.young@gmail.com)'])
__all__ = ['modularity_matrix', 'directed_modularity_matrix']
@not_implemented_for('directed')
@not_implemented_for('multigraph')
def modularity_matrix(G, nodelist=None):
"""Return the modularity matrix of G.
The modularity matrix is the matrix B = A - <A>, where A is the adjacency
matrix and <A> is the average adjacency matrix, assuming that the graph
is described by the configuration model.
More specifically, the element B_ij of B is defined as
A_ij - k_i k_j/m
where k_i(in) is the degree of node i, and were m is the number of edges
in the graph.
Parameters
----------
G : Graph
A NetworkX graph
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().
Returns
-------
B : Numpy matrix
The modularity matrix of G.
Examples
--------
>>> import networkx as nx
>>> k =[3, 2, 2, 1, 0]
>>> G = nx.havel_hakimi_graph(k)
>>> B = nx.modularity_matrix(G)
See Also
--------
to_numpy_matrix
adjacency_matrix
laplacian_matrix
directed_modularity_matrix
References
----------
.. [1] M. E. J. Newman, "Modularity and community structure in networks",
Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
"""
if nodelist is None:
nodelist = G.nodes()
A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, format='csr')
k = A.sum(axis=1)
m = G.number_of_edges()
# Expected adjacency matrix
X = k * k.transpose() / (2 * m)
return A - X
@not_implemented_for('undirected')
@not_implemented_for('multigraph')
def directed_modularity_matrix(G, nodelist=None):
"""Return the directed modularity matrix of G.
The modularity matrix is the matrix B = A - <A>, where A is the adjacency
matrix and <A> is the expected adjacency matrix, assuming that the graph
is described by the configuration model.
More specifically, the element B_ij of B is defined as
B_ij = A_ij - k_i(out) k_j(in)/m
where k_i(in) is the in degree of node i, and k_j(out) is the out degree
of node j, with m the number of edges in the graph.
Parameters
----------
G : DiGraph
A NetworkX DiGraph
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().
Returns
-------
B : Numpy matrix
The modularity matrix of G.
Examples
--------
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edges_from(((1,2), (1,3), (3,1), (3,2), (3,5), (4,5), (4,6),
... (5,4), (5,6), (6,4)))
>>> B = nx.directed_modularity_matrix(G)
Notes
-----
NetworkX defines the element A_ij of the adjacency matrix as 1 if there
is a link going from node i to node j. Leicht and Newman use the opposite
definition. This explains the different expression for B_ij.
See Also
--------
to_numpy_matrix
adjacency_matrix
laplacian_matrix
modularity_matrix
References
----------
.. [1] E. A. Leicht, M. E. J. Newman,
"Community structure in directed networks",
Phys. Rev Lett., vol. 100, no. 11, p. 118703, 2008.
"""
if nodelist is None:
nodelist = G.nodes()
A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, format='csr')
k_in = A.sum(axis=0)
k_out = A.sum(axis=1)
m = G.number_of_edges()
# Expected adjacency matrix
X = k_out * k_in / m
return A - X
# fixture for nose tests
def setup_module(module):
from nose import SkipTest
try:
import numpy
import scipy
except:
raise SkipTest("NumPy not available")
|