1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
from contextlib import contextmanager
from math import sqrt
import networkx as nx
from nose import SkipTest
from nose.tools import *
methods = ('tracemin_pcg', 'tracemin_chol', 'tracemin_lu', 'lanczos', 'lobpcg')
try:
from numpy.random import get_state, seed, set_state, shuffle
@contextmanager
def save_random_state():
state = get_state()
try:
yield
finally:
set_state(state)
def preserve_random_state(func):
def wrapper(*args, **kwargs):
with save_random_state():
seed(1234567890)
return func(*args, **kwargs)
wrapper.__name__ = func.__name__
return wrapper
except ImportError:
@contextmanager
def save_random_state():
yield
def preserve_random_state(func):
return func
def check_eigenvector(A, l, x):
nx = numpy.linalg.norm(x)
# Check zeroness.
assert_not_almost_equal(nx, 0)
y = A * x
ny = numpy.linalg.norm(y)
# Check collinearity.
assert_almost_equal(numpy.dot(x, y), nx * ny)
# Check eigenvalue.
assert_almost_equal(ny, l * nx)
class TestAlgebraicConnectivity(object):
numpy = 1
@classmethod
def setupClass(cls):
global numpy
try:
import numpy.linalg
import scipy.sparse
except ImportError:
raise SkipTest('SciPy not available.')
@preserve_random_state
def test_directed(self):
G = nx.DiGraph()
for method in self._methods:
assert_raises(nx.NetworkXNotImplemented, nx.algebraic_connectivity,
G, method=method)
assert_raises(nx.NetworkXNotImplemented, nx.fiedler_vector, G,
method=method)
@preserve_random_state
def test_null_and_singleton(self):
G = nx.Graph()
for method in self._methods:
assert_raises(nx.NetworkXError, nx.algebraic_connectivity, G,
method=method)
assert_raises(nx.NetworkXError, nx.fiedler_vector, G,
method=method)
G.add_edge(0, 0)
for method in self._methods:
assert_raises(nx.NetworkXError, nx.algebraic_connectivity, G,
method=method)
assert_raises(nx.NetworkXError, nx.fiedler_vector, G,
method=method)
@preserve_random_state
def test_disconnected(self):
G = nx.Graph()
G.add_nodes_from(range(2))
for method in self._methods:
assert_equal(nx.algebraic_connectivity(G), 0)
assert_raises(nx.NetworkXError, nx.fiedler_vector, G,
method=method)
G.add_edge(0, 1, weight=0)
for method in self._methods:
assert_equal(nx.algebraic_connectivity(G), 0)
assert_raises(nx.NetworkXError, nx.fiedler_vector, G,
method=method)
@preserve_random_state
def test_unrecognized_method(self):
G = nx.path_graph(4)
assert_raises(nx.NetworkXError, nx.algebraic_connectivity, G,
method='unknown')
assert_raises(nx.NetworkXError, nx.fiedler_vector, G, method='unknown')
@preserve_random_state
def test_two_nodes(self):
G = nx.Graph()
G.add_edge(0, 1, weight=1)
A = nx.laplacian_matrix(G)
for method in self._methods:
assert_almost_equal(nx.algebraic_connectivity(
G, tol=1e-12, method=method), 2)
x = nx.fiedler_vector(G, tol=1e-12, method=method)
check_eigenvector(A, 2, x)
G = nx.MultiGraph()
G.add_edge(0, 0, spam=1e8)
G.add_edge(0, 1, spam=1)
G.add_edge(0, 1, spam=-2)
A = -3 * nx.laplacian_matrix(G, weight='spam')
for method in self._methods:
assert_almost_equal(nx.algebraic_connectivity(
G, weight='spam', tol=1e-12, method=method), 6)
x = nx.fiedler_vector(G, weight='spam', tol=1e-12, method=method)
check_eigenvector(A, 6, x)
@preserve_random_state
def test_path(self):
G = nx.path_graph(8)
A = nx.laplacian_matrix(G)
sigma = 2 - sqrt(2 + sqrt(2))
for method in self._methods:
assert_almost_equal(nx.algebraic_connectivity(
G, tol=1e-12, method=method), sigma)
x = nx.fiedler_vector(G, tol=1e-12, method=method)
check_eigenvector(A, sigma, x)
@preserve_random_state
def test_cycle(self):
G = nx.cycle_graph(8)
A = nx.laplacian_matrix(G)
sigma = 2 - sqrt(2)
for method in self._methods:
assert_almost_equal(nx.algebraic_connectivity(
G, tol=1e-12, method=method), sigma)
x = nx.fiedler_vector(G, tol=1e-12, method=method)
check_eigenvector(A, sigma, x)
@preserve_random_state
def test_buckminsterfullerene(self):
G = nx.Graph(
[(1, 10), (1, 41), (1, 59), (2, 12), (2, 42), (2, 60), (3, 6),
(3, 43), (3, 57), (4, 8), (4, 44), (4, 58), (5, 13), (5, 56),
(5, 57), (6, 10), (6, 31), (7, 14), (7, 56), (7, 58), (8, 12),
(8, 32), (9, 23), (9, 53), (9, 59), (10, 15), (11, 24), (11, 53),
(11, 60), (12, 16), (13, 14), (13, 25), (14, 26), (15, 27),
(15, 49), (16, 28), (16, 50), (17, 18), (17, 19), (17, 54),
(18, 20), (18, 55), (19, 23), (19, 41), (20, 24), (20, 42),
(21, 31), (21, 33), (21, 57), (22, 32), (22, 34), (22, 58),
(23, 24), (25, 35), (25, 43), (26, 36), (26, 44), (27, 51),
(27, 59), (28, 52), (28, 60), (29, 33), (29, 34), (29, 56),
(30, 51), (30, 52), (30, 53), (31, 47), (32, 48), (33, 45),
(34, 46), (35, 36), (35, 37), (36, 38), (37, 39), (37, 49),
(38, 40), (38, 50), (39, 40), (39, 51), (40, 52), (41, 47),
(42, 48), (43, 49), (44, 50), (45, 46), (45, 54), (46, 55),
(47, 54), (48, 55)])
for normalized in (False, True):
if not normalized:
A = nx.laplacian_matrix(G)
sigma = 0.2434017461399311
else:
A = nx.normalized_laplacian_matrix(G)
sigma = 0.08113391537997749
for method in methods:
try:
assert_almost_equal(nx.algebraic_connectivity(
G, normalized=normalized, tol=1e-12, method=method),
sigma)
x = nx.fiedler_vector(G, normalized=normalized, tol=1e-12,
method=method)
check_eigenvector(A, sigma, x)
except nx.NetworkXError as e:
if e.args not in (('Cholesky solver unavailable.',),
('LU solver unavailable.',)):
raise
_methods = ('tracemin', 'lanczos', 'lobpcg')
class TestSpectralOrdering(object):
numpy = 1
@classmethod
def setupClass(cls):
global numpy
try:
import numpy.linalg
import scipy.sparse
except ImportError:
raise SkipTest('SciPy not available.')
@preserve_random_state
def test_nullgraph(self):
for graph in (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph):
G = graph()
assert_raises(nx.NetworkXError, nx.spectral_ordering, G)
@preserve_random_state
def test_singleton(self):
for graph in (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph):
G = graph()
G.add_node('x')
assert_equal(nx.spectral_ordering(G), ['x'])
G.add_edge('x', 'x', weight=33)
G.add_edge('x', 'x', weight=33)
assert_equal(nx.spectral_ordering(G), ['x'])
@preserve_random_state
def test_unrecognized_method(self):
G = nx.path_graph(4)
assert_raises(nx.NetworkXError, nx.spectral_ordering, G,
method='unknown')
@preserve_random_state
def test_three_nodes(self):
G = nx.Graph()
G.add_weighted_edges_from([(1, 2, 1), (1, 3, 2), (2, 3, 1)],
weight='spam')
for method in self._methods:
order = nx.spectral_ordering(G, weight='spam', method=method)
assert_equal(set(order), set(G))
ok_(set([1, 3]) in (set(order[:-1]), set(order[1:])))
G = nx.MultiDiGraph()
G.add_weighted_edges_from([(1, 2, 1), (1, 3, 2), (2, 3, 1), (2, 3, 2)])
for method in self._methods:
order = nx.spectral_ordering(G, method=method)
assert_equal(set(order), set(G))
ok_(set([2, 3]) in (set(order[:-1]), set(order[1:])))
@preserve_random_state
def test_path(self):
path = list(range(10))
shuffle(path)
G = nx.Graph()
G.add_path(path)
for method in self._methods:
order = nx.spectral_ordering(G, method=method)
ok_(order in [path, list(reversed(path))])
@preserve_random_state
def test_disconnected(self):
G = nx.Graph()
G.add_path(range(0, 10, 2))
G.add_path(range(1, 10, 2))
for method in self._methods:
order = nx.spectral_ordering(G, method=method)
assert_equal(set(order), set(G))
seqs = [list(range(0, 10, 2)), list(range(8, -1, -2)),
list(range(1, 10, 2)), list(range(9, -1, -2))]
ok_(order[:5] in seqs)
ok_(order[5:] in seqs)
@preserve_random_state
def test_cycle(self):
path = list(range(10))
G = nx.Graph()
G.add_path(path, weight=5)
G.add_edge(path[-1], path[0], weight=1)
A = nx.laplacian_matrix(G).todense()
for normalized in (False, True):
for method in methods:
try:
order = nx.spectral_ordering(G, normalized=normalized,
method=method)
except nx.NetworkXError as e:
if e.args not in (('Cholesky solver unavailable.',),
('LU solver unavailable.',)):
raise
else:
if not normalized:
ok_(order in [[1, 2, 0, 3, 4, 5, 6, 9, 7, 8],
[8, 7, 9, 6, 5, 4, 3, 0, 2, 1]])
else:
ok_(order in [[1, 2, 3, 0, 4, 5, 9, 6, 7, 8],
[8, 7, 6, 9, 5, 4, 0, 3, 2, 1]])
_methods = ('tracemin', 'lanczos', 'lobpcg')
|