File: test_algebraic_connectivity.py

package info (click to toggle)
python-networkx 1.11-1~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 5,856 kB
  • sloc: python: 59,463; makefile: 159
file content (288 lines) | stat: -rw-r--r-- 10,790 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from contextlib import contextmanager
from math import sqrt
import networkx as nx
from nose import SkipTest
from nose.tools import *

methods = ('tracemin_pcg', 'tracemin_chol', 'tracemin_lu', 'lanczos', 'lobpcg')

try:
    from numpy.random import get_state, seed, set_state, shuffle

    @contextmanager
    def save_random_state():
        state = get_state()
        try:
            yield
        finally:
            set_state(state)

    def preserve_random_state(func):
        def wrapper(*args, **kwargs):
            with save_random_state():
                seed(1234567890)
                return func(*args, **kwargs)
        wrapper.__name__ = func.__name__
        return wrapper
except ImportError:
    @contextmanager
    def save_random_state():
        yield

    def preserve_random_state(func):
        return func


def check_eigenvector(A, l, x):
    nx = numpy.linalg.norm(x)
    # Check zeroness.
    assert_not_almost_equal(nx, 0)
    y = A * x
    ny = numpy.linalg.norm(y)
    # Check collinearity.
    assert_almost_equal(numpy.dot(x, y), nx * ny)
    # Check eigenvalue.
    assert_almost_equal(ny, l * nx)


class TestAlgebraicConnectivity(object):

    numpy = 1

    @classmethod
    def setupClass(cls):
        global numpy
        try:
            import numpy.linalg
            import scipy.sparse
        except ImportError:
            raise SkipTest('SciPy not available.')

    @preserve_random_state
    def test_directed(self):
        G = nx.DiGraph()
        for method in self._methods:
            assert_raises(nx.NetworkXNotImplemented, nx.algebraic_connectivity,
                          G, method=method)
            assert_raises(nx.NetworkXNotImplemented, nx.fiedler_vector, G,
                          method=method)

    @preserve_random_state
    def test_null_and_singleton(self):
        G = nx.Graph()
        for method in self._methods:
            assert_raises(nx.NetworkXError, nx.algebraic_connectivity, G,
                          method=method)
            assert_raises(nx.NetworkXError, nx.fiedler_vector, G,
                          method=method)
        G.add_edge(0, 0)
        for method in self._methods:
            assert_raises(nx.NetworkXError, nx.algebraic_connectivity, G,
                          method=method)
            assert_raises(nx.NetworkXError, nx.fiedler_vector, G,
                          method=method)

    @preserve_random_state
    def test_disconnected(self):
        G = nx.Graph()
        G.add_nodes_from(range(2))
        for method in self._methods:
            assert_equal(nx.algebraic_connectivity(G), 0)
            assert_raises(nx.NetworkXError, nx.fiedler_vector, G,
                          method=method)
        G.add_edge(0, 1, weight=0)
        for method in self._methods:
            assert_equal(nx.algebraic_connectivity(G), 0)
            assert_raises(nx.NetworkXError, nx.fiedler_vector, G,
                          method=method)

    @preserve_random_state
    def test_unrecognized_method(self):
        G = nx.path_graph(4)
        assert_raises(nx.NetworkXError, nx.algebraic_connectivity, G,
                      method='unknown')
        assert_raises(nx.NetworkXError, nx.fiedler_vector, G, method='unknown')

    @preserve_random_state
    def test_two_nodes(self):
        G = nx.Graph()
        G.add_edge(0, 1, weight=1)
        A = nx.laplacian_matrix(G)
        for method in self._methods:
            assert_almost_equal(nx.algebraic_connectivity(
                G, tol=1e-12, method=method), 2)
            x = nx.fiedler_vector(G, tol=1e-12, method=method)
            check_eigenvector(A, 2, x)
        G = nx.MultiGraph()
        G.add_edge(0, 0, spam=1e8)
        G.add_edge(0, 1, spam=1)
        G.add_edge(0, 1, spam=-2)
        A = -3 * nx.laplacian_matrix(G, weight='spam')
        for method in self._methods:
            assert_almost_equal(nx.algebraic_connectivity(
                G, weight='spam', tol=1e-12, method=method), 6)
            x = nx.fiedler_vector(G, weight='spam', tol=1e-12, method=method)
            check_eigenvector(A, 6, x)

    @preserve_random_state
    def test_path(self):
        G = nx.path_graph(8)
        A = nx.laplacian_matrix(G)
        sigma = 2 - sqrt(2 + sqrt(2))
        for method in self._methods:
            assert_almost_equal(nx.algebraic_connectivity(
                G, tol=1e-12, method=method), sigma)
            x = nx.fiedler_vector(G, tol=1e-12, method=method)
            check_eigenvector(A, sigma, x)

    @preserve_random_state
    def test_cycle(self):
        G = nx.cycle_graph(8)
        A = nx.laplacian_matrix(G)
        sigma = 2 - sqrt(2)
        for method in self._methods:
            assert_almost_equal(nx.algebraic_connectivity(
                G, tol=1e-12, method=method), sigma)
            x = nx.fiedler_vector(G, tol=1e-12, method=method)
            check_eigenvector(A, sigma, x)

    @preserve_random_state
    def test_buckminsterfullerene(self):
        G = nx.Graph(
            [(1, 10), (1, 41), (1, 59), (2, 12), (2, 42), (2, 60), (3, 6),
             (3, 43), (3, 57), (4, 8), (4, 44), (4, 58), (5, 13), (5, 56),
             (5, 57), (6, 10), (6, 31), (7, 14), (7, 56), (7, 58), (8, 12),
             (8, 32), (9, 23), (9, 53), (9, 59), (10, 15), (11, 24), (11, 53),
             (11, 60), (12, 16), (13, 14), (13, 25), (14, 26), (15, 27),
             (15, 49), (16, 28), (16, 50), (17, 18), (17, 19), (17, 54),
             (18, 20), (18, 55), (19, 23), (19, 41), (20, 24), (20, 42),
             (21, 31), (21, 33), (21, 57), (22, 32), (22, 34), (22, 58),
             (23, 24), (25, 35), (25, 43), (26, 36), (26, 44), (27, 51),
             (27, 59), (28, 52), (28, 60), (29, 33), (29, 34), (29, 56),
             (30, 51), (30, 52), (30, 53), (31, 47), (32, 48), (33, 45),
             (34, 46), (35, 36), (35, 37), (36, 38), (37, 39), (37, 49),
             (38, 40), (38, 50), (39, 40), (39, 51), (40, 52), (41, 47),
             (42, 48), (43, 49), (44, 50), (45, 46), (45, 54), (46, 55),
             (47, 54), (48, 55)])
        for normalized in (False, True):
            if not normalized:
                A = nx.laplacian_matrix(G)
                sigma = 0.2434017461399311
            else:
                A = nx.normalized_laplacian_matrix(G)
                sigma = 0.08113391537997749
            for method in methods:
                try:
                    assert_almost_equal(nx.algebraic_connectivity(
                        G, normalized=normalized, tol=1e-12, method=method),
                        sigma)
                    x = nx.fiedler_vector(G, normalized=normalized, tol=1e-12,
                                          method=method)
                    check_eigenvector(A, sigma, x)
                except nx.NetworkXError as e:
                    if e.args not in (('Cholesky solver unavailable.',),
                                      ('LU solver unavailable.',)):
                        raise

    _methods = ('tracemin', 'lanczos', 'lobpcg')


class TestSpectralOrdering(object):

    numpy = 1

    @classmethod
    def setupClass(cls):
        global numpy
        try:
            import numpy.linalg
            import scipy.sparse
        except ImportError:
            raise SkipTest('SciPy not available.')

    @preserve_random_state
    def test_nullgraph(self):
        for graph in (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph):
            G = graph()
            assert_raises(nx.NetworkXError, nx.spectral_ordering, G)

    @preserve_random_state
    def test_singleton(self):
        for graph in (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph):
            G = graph()
            G.add_node('x')
            assert_equal(nx.spectral_ordering(G), ['x'])
            G.add_edge('x', 'x', weight=33)
            G.add_edge('x', 'x', weight=33)
            assert_equal(nx.spectral_ordering(G), ['x'])

    @preserve_random_state
    def test_unrecognized_method(self):
        G = nx.path_graph(4)
        assert_raises(nx.NetworkXError, nx.spectral_ordering, G,
                      method='unknown')

    @preserve_random_state
    def test_three_nodes(self):
        G = nx.Graph()
        G.add_weighted_edges_from([(1, 2, 1), (1, 3, 2), (2, 3, 1)],
                                  weight='spam')
        for method in self._methods:
            order = nx.spectral_ordering(G, weight='spam', method=method)
            assert_equal(set(order), set(G))
            ok_(set([1, 3]) in (set(order[:-1]), set(order[1:])))
        G = nx.MultiDiGraph()
        G.add_weighted_edges_from([(1, 2, 1), (1, 3, 2), (2, 3, 1), (2, 3, 2)])
        for method in self._methods:
            order = nx.spectral_ordering(G, method=method)
            assert_equal(set(order), set(G))
            ok_(set([2, 3]) in (set(order[:-1]), set(order[1:])))

    @preserve_random_state
    def test_path(self):
        path = list(range(10))
        shuffle(path)
        G = nx.Graph()
        G.add_path(path)
        for method in self._methods:
            order = nx.spectral_ordering(G, method=method)
            ok_(order in [path, list(reversed(path))])

    @preserve_random_state
    def test_disconnected(self):
        G = nx.Graph()
        G.add_path(range(0, 10, 2))
        G.add_path(range(1, 10, 2))
        for method in self._methods:
            order = nx.spectral_ordering(G, method=method)
            assert_equal(set(order), set(G))
            seqs = [list(range(0, 10, 2)), list(range(8, -1, -2)),
                    list(range(1, 10, 2)), list(range(9, -1, -2))]
            ok_(order[:5] in seqs)
            ok_(order[5:] in seqs)

    @preserve_random_state
    def test_cycle(self):
        path = list(range(10))
        G = nx.Graph()
        G.add_path(path, weight=5)
        G.add_edge(path[-1], path[0], weight=1)
        A = nx.laplacian_matrix(G).todense()
        for normalized in (False, True):
            for method in methods:
                try:
                    order = nx.spectral_ordering(G, normalized=normalized,
                                                 method=method)
                except nx.NetworkXError as e:
                    if e.args not in (('Cholesky solver unavailable.',),
                                      ('LU solver unavailable.',)):
                        raise
                else:
                    if not normalized:
                        ok_(order in [[1, 2, 0, 3, 4, 5, 6, 9, 7, 8],
                                      [8, 7, 9, 6, 5, 4, 3, 0, 2, 1]])
                    else:
                        ok_(order in [[1, 2, 3, 0, 4, 5, 9, 6, 7, 8],
                                      [8, 7, 6, 9, 5, 4, 0, 3, 2, 1]])

    _methods = ('tracemin', 'lanczos', 'lobpcg')