File: test_modularity.py

package info (click to toggle)
python-networkx 1.11-1~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 5,856 kB
  • sloc: python: 59,463; makefile: 159
file content (58 lines) | stat: -rw-r--r-- 2,392 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from nose import SkipTest

import networkx as nx
from networkx.generators.degree_seq import havel_hakimi_graph


class TestModularity(object):
    numpy = 1  # nosetests attribute, use nosetests -a 'not numpy' to skip test

    @classmethod
    def setupClass(cls):
        global numpy
        global scipy
        global assert_equal
        global assert_almost_equal
        try:
            import numpy
            import scipy
            from numpy.testing import assert_equal, assert_almost_equal
        except ImportError:
            raise SkipTest('SciPy not available.')

    def setUp(self):
        deg = [3, 2, 2, 1, 0]
        self.G = havel_hakimi_graph(deg)
        # Graph used as an example in Sec. 4.1 of Langville and Meyer,
        # "Google's PageRank and Beyond". (Used for test_directed_laplacian)
        self.DG = nx.DiGraph()
        self.DG.add_edges_from(((1,2), (1,3), (3,1), (3,2), (3,5), (4,5), (4,6),
                                (5,4), (5,6), (6,4)))


    def test_modularity(self):
        "Modularity matrix"
        B = numpy.matrix([[-1.125,  0.25 ,  0.25 ,  0.625,  0.   ],
                         [ 0.25 , -0.5  ,  0.5  , -0.25 ,  0.   ],
                         [ 0.25 ,  0.5  , -0.5  , -0.25 ,  0.   ],
                         [ 0.625, -0.25 , -0.25 , -0.125,  0.   ],
                         [ 0.   ,  0.   ,  0.   ,  0.   ,  0.   ]])

        permutation = [4, 0, 1, 2, 3]
        assert_equal(nx.modularity_matrix(self.G), B)
        assert_equal(nx.modularity_matrix(self.G, nodelist=permutation),
                     B[numpy.ix_(permutation, permutation)])

    def test_directed_modularity(self):
        "Directed Modularity matrix"
        B = numpy.matrix([[-0.2,  0.6,  0.8, -0.4, -0.4, -0.4],
                          [ 0. ,  0. ,  0. ,  0. ,  0. ,  0. ],
                          [ 0.7,  0.4, -0.3, -0.6,  0.4, -0.6],
                          [-0.2, -0.4, -0.2, -0.4,  0.6,  0.6],
                          [-0.2, -0.4, -0.2,  0.6, -0.4,  0.6],
                          [-0.1, -0.2, -0.1,  0.8, -0.2, -0.2]])
        node_permutation = [5, 1, 2, 3, 4, 6]
        idx_permutation = [4, 0, 1, 2, 3, 5]
        assert_equal(nx.directed_modularity_matrix(self.DG), B)
        assert_equal(nx.directed_modularity_matrix(self.DG, nodelist=node_permutation),
                     B[numpy.ix_(idx_permutation, idx_permutation)])