File: weighted.py

package info (click to toggle)
python-networkx 1.7~rc1-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,128 kB
  • sloc: python: 44,557; makefile: 135
file content (765 lines) | stat: -rw-r--r-- 23,144 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
# -*- coding: utf-8 -*-
"""
Shortest path algorithms for weighed graphs.
"""
__author__ = """\n""".join(['Aric Hagberg <hagberg@lanl.gov>',
                            'Loïc Séguin-C. <loicseguin@gmail.com>',
                            'Dan Schult <dschult@colgate.edu>'])
#    Copyright (C) 2004-2011 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.

__all__ = ['dijkstra_path',
           'dijkstra_path_length',
           'bidirectional_dijkstra',
           'single_source_dijkstra',
           'single_source_dijkstra_path',
           'single_source_dijkstra_path_length',
           'all_pairs_dijkstra_path',
           'all_pairs_dijkstra_path_length',
           'dijkstra_predecessor_and_distance',
           'bellman_ford','negative_edge_cycle']

import heapq
import networkx as nx
from networkx.utils import generate_unique_node

def dijkstra_path(G, source, target, weight='weight'):
    """Returns the shortest path from source to target in a weighted graph G.

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Starting node

    target : node
       Ending node

    weight: string, optional (default='weight')
       Edge data key corresponding to the edge weight

    Returns
    -------
    path : list
       List of nodes in a shortest path.

    Raises
    ------
    NetworkXNoPath
       If no path exists between source and target.

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> print(nx.dijkstra_path(G,0,4))
    [0, 1, 2, 3, 4]

    Notes
    ------
    Edge weight attributes must be numerical.
    Distances are calculated as sums of weighted edges traversed.

    See Also
    --------
    bidirectional_dijkstra()
    """
    (length,path)=single_source_dijkstra(G, source, target=target,
                                         weight=weight)
    try:
        return path[target]
    except KeyError:
        raise nx.NetworkXNoPath("node %s not reachable from %s"%(source,target))


def dijkstra_path_length(G, source, target, weight='weight'):
    """Returns the shortest path length from source to target
    in a weighted graph.

    Parameters
    ----------
    G : NetworkX graph

    source : node label
       starting node for path

    target : node label
       ending node for path

    weight: string, optional (default='weight')
       Edge data key corresponding to the edge weight

    Returns
    -------
    length : number
        Shortest path length.

    Raises
    ------
    NetworkXNoPath
        If no path exists between source and target.

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> print(nx.dijkstra_path_length(G,0,4))
    4

    Notes
    -----
    Edge weight attributes must be numerical.
    Distances are calculated as sums of weighted edges traversed.

    See Also
    --------
    bidirectional_dijkstra()
    """
    length=single_source_dijkstra_path_length(G, source, weight=weight)
    try:
        return length[target]
    except KeyError:
        raise nx.NetworkXNoPath("node %s not reachable from %s"%(source,target))


def single_source_dijkstra_path(G,source, cutoff=None, weight='weight'):
    """Compute shortest path between source and all other reachable
    nodes for a weighted graph.

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Starting node for path.

    weight: string, optional (default='weight')
       Edge data key corresponding to the edge weight

    cutoff : integer or float, optional
       Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    paths : dictionary
       Dictionary of shortest path lengths keyed by target.

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> path=nx.single_source_dijkstra_path(G,0)
    >>> path[4]
    [0, 1, 2, 3, 4]

    Notes
    -----
    Edge weight attributes must be numerical.
    Distances are calculated as sums of weighted edges traversed.

    See Also
    --------
    single_source_dijkstra()

    """
    (length,path)=single_source_dijkstra(G,source, weight = weight)
    return path


def single_source_dijkstra_path_length(G, source, cutoff= None,
                                       weight= 'weight'):
    """Compute the shortest path length between source and all other
    reachable nodes for a weighted graph.

    Parameters
    ----------
    G : NetworkX graph

    source : node label
       Starting node for path

    weight: string, optional (default='weight')
       Edge data key corresponding to the edge weight.

    cutoff : integer or float, optional
       Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    length : dictionary
       Dictionary of shortest lengths keyed by target.

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> length=nx.single_source_dijkstra_path_length(G,0)
    >>> length[4]
    4
    >>> print(length)
    {0: 0, 1: 1, 2: 2, 3: 3, 4: 4}

    Notes
    -----
    Edge weight attributes must be numerical.
    Distances are calculated as sums of weighted edges traversed.

    See Also
    --------
    single_source_dijkstra()

    """
    dist = {}  # dictionary of final distances
    seen = {source:0}
    fringe=[] # use heapq with (distance,label) tuples
    heapq.heappush(fringe,(0,source))
    while fringe:
        (d,v)=heapq.heappop(fringe)
        if v in dist:
            continue # already searched this node.
        dist[v] = d
        #for ignore,w,edgedata in G.edges_iter(v,data=True):
        #is about 30% slower than the following
        if G.is_multigraph():
            edata=[]
            for w,keydata in G[v].items():
                minweight=min((dd.get(weight,1)
                               for k,dd in keydata.items()))
                edata.append((w,{weight:minweight}))
        else:
            edata=iter(G[v].items())

        for w,edgedata in edata:
            vw_dist = dist[v] + edgedata.get(weight,1)
            if cutoff is not None:
                if vw_dist>cutoff:
                    continue
            if w in dist:
                if vw_dist < dist[w]:
                    raise ValueError('Contradictory paths found:',
                                     'negative weights?')
            elif w not in seen or vw_dist < seen[w]:
                seen[w] = vw_dist
                heapq.heappush(fringe,(vw_dist,w))
    return dist


def single_source_dijkstra(G,source,target=None,cutoff=None,weight='weight'):
    """Compute shortest paths and lengths in a weighted graph G.

    Uses Dijkstra's algorithm for shortest paths.

    Parameters
    ----------
    G : NetworkX graph

    source : node label
       Starting node for path

    target : node label, optional
       Ending node for path

    cutoff : integer or float, optional
       Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    distance,path : dictionaries
       Returns a tuple of two dictionaries keyed by node.
       The first dictionary stores distance from the source.
       The second stores the path from the source to that node.


    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> length,path=nx.single_source_dijkstra(G,0)
    >>> print(length[4])
    4
    >>> print(length)
    {0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
    >>> path[4]
    [0, 1, 2, 3, 4]

    Notes
    ---------
    Edge weight attributes must be numerical.
    Distances are calculated as sums of weighted edges traversed.

    Based on the Python cookbook recipe (119466) at
    http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466

    This algorithm is not guaranteed to work if edge weights
    are negative or are floating point numbers
    (overflows and roundoff errors can cause problems).

    See Also
    --------
    single_source_dijkstra_path()
    single_source_dijkstra_path_length()
    """
    if source==target:
        return ({source:0}, {source:[source]})
    dist = {}  # dictionary of final distances
    paths = {source:[source]}  # dictionary of paths
    seen = {source:0}
    fringe=[] # use heapq with (distance,label) tuples
    heapq.heappush(fringe,(0,source))
    while fringe:
        (d,v)=heapq.heappop(fringe)
        if v in dist:
            continue # already searched this node.
        dist[v] = d
        if v == target:
            break
        #for ignore,w,edgedata in G.edges_iter(v,data=True):
        #is about 30% slower than the following
        if G.is_multigraph():
            edata=[]
            for w,keydata in G[v].items():
                minweight=min((dd.get(weight,1)
                               for k,dd in keydata.items()))
                edata.append((w,{weight:minweight}))
        else:
            edata=iter(G[v].items())

        for w,edgedata in edata:
            vw_dist = dist[v] + edgedata.get(weight,1)
            if cutoff is not None:
                if vw_dist>cutoff:
                    continue
            if w in dist:
                if vw_dist < dist[w]:
                    raise ValueError('Contradictory paths found:',
                                     'negative weights?')
            elif w not in seen or vw_dist < seen[w]:
                seen[w] = vw_dist
                heapq.heappush(fringe,(vw_dist,w))
                paths[w] = paths[v]+[w]
    return (dist,paths)


def dijkstra_predecessor_and_distance(G,source, cutoff=None, weight='weight'):
    """Compute shortest path length and predecessors on shortest paths
    in weighted graphs.

    Parameters
    ----------
    G : NetworkX graph

    source : node label
       Starting node for path

    weight: string, optional (default='weight')
       Edge data key corresponding to the edge weight

    cutoff : integer or float, optional
       Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    pred,distance : dictionaries
       Returns two dictionaries representing a list of predecessors
       of a node and the distance to each node.

    Notes
    -----
    Edge weight attributes must be numerical.
    Distances are calculated as sums of weighted edges traversed.

    The list of predecessors contains more than one element only when
    there are more than one shortest paths to the key node.
    """
    push=heapq.heappush
    pop=heapq.heappop
    dist = {}  # dictionary of final distances
    pred = {source:[]}  # dictionary of predecessors
    seen = {source:0}
    fringe=[] # use heapq with (distance,label) tuples
    push(fringe,(0,source))
    while fringe:
        (d,v)=pop(fringe)
        if v in dist: continue # already searched this node.
        dist[v] = d
        if G.is_multigraph():
            edata=[]
            for w,keydata in G[v].items():
                minweight=min((dd.get(weight,1)
                               for k,dd in keydata.items()))
                edata.append((w,{weight:minweight}))
        else:
            edata=iter(G[v].items())
        for w,edgedata in edata:
            vw_dist = dist[v] + edgedata.get(weight,1)
            if cutoff is not None:
                if vw_dist>cutoff:
                    continue
            if w in dist:
                if vw_dist < dist[w]:
                    raise ValueError('Contradictory paths found:',
                                     'negative weights?')
            elif w not in seen or vw_dist < seen[w]:
                seen[w] = vw_dist
                push(fringe,(vw_dist,w))
                pred[w] = [v]
            elif vw_dist==seen[w]:
                pred[w].append(v)
    return (pred,dist)


def all_pairs_dijkstra_path_length(G, cutoff=None, weight='weight'):
    """ Compute shortest path lengths between all nodes in a weighted graph.

    Parameters
    ----------
    G : NetworkX graph

    weight: string, optional (default='weight')
       Edge data key corresponding to the edge weight

    cutoff : integer or float, optional
       Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    distance : dictionary
       Dictionary, keyed by source and target, of shortest path lengths.

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> length=nx.all_pairs_dijkstra_path_length(G)
    >>> print(length[1][4])
    3
    >>> length[1]
    {0: 1, 1: 0, 2: 1, 3: 2, 4: 3}

    Notes
    -----
    Edge weight attributes must be numerical.
    Distances are calculated as sums of weighted edges traversed.

    The dictionary returned only has keys for reachable node pairs.
    """
    paths={}
    for n in G:
        paths[n]=single_source_dijkstra_path_length(G,n, cutoff=cutoff,
                                                    weight=weight)
    return paths

def all_pairs_dijkstra_path(G, cutoff=None, weight='weight'):
    """ Compute shortest paths between all nodes in a weighted graph.

    Parameters
    ----------
    G : NetworkX graph

    weight: string, optional (default='weight')
       Edge data key corresponding to the edge weight

    cutoff : integer or float, optional
       Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    distance : dictionary
       Dictionary, keyed by source and target, of shortest paths.

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> path=nx.all_pairs_dijkstra_path(G)
    >>> print(path[0][4])
    [0, 1, 2, 3, 4]

    Notes
    -----
    Edge weight attributes must be numerical.
    Distances are calculated as sums of weighted edges traversed.

    See Also
    --------
    floyd_warshall()

    """
    paths={}
    for n in G:
        paths[n]=single_source_dijkstra_path(G, n, cutoff=cutoff,
                                             weight=weight)
    return paths

def bellman_ford(G, source, weight = 'weight'):
    """Compute shortest path lengths and predecessors on shortest paths
    in weighted graphs.

    The algorithm has a running time of O(mn) where n is the number of
    nodes and m is the number of edges.  It is slower than Dijkstra but
    can handle negative edge weights.

    Parameters
    ----------
    G : NetworkX graph
       The algorithm works for all types of graphs, including directed
       graphs and multigraphs.

    source: node label
       Starting node for path

    weight: string, optional (default='weight')
       Edge data key corresponding to the edge weight

    Returns
    -------
    pred, dist : dictionaries
       Returns two dictionaries keyed by node to predecessor in the
       path and to the distance from the source respectively.

    Raises
    ------
    NetworkXUnbounded
       If the (di)graph contains a negative cost (di)cycle, the
       algorithm raises an exception to indicate the presence of the
       negative cost (di)cycle.  Note: any negative weight edge in an
       undirected graph is a negative cost cycle.

    Examples
    --------
    >>> import networkx as nx
    >>> G = nx.path_graph(5, create_using = nx.DiGraph())
    >>> pred, dist = nx.bellman_ford(G, 0)
    >>> pred
    {0: None, 1: 0, 2: 1, 3: 2, 4: 3}
    >>> dist
    {0: 0, 1: 1, 2: 2, 3: 3, 4: 4}

    >>> from nose.tools import assert_raises
    >>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
    >>> G[1][2]['weight'] = -7
    >>> assert_raises(nx.NetworkXUnbounded, nx.bellman_ford, G, 0)

    Notes
    -----
    Edge weight attributes must be numerical.
    Distances are calculated as sums of weighted edges traversed.

    The dictionaries returned only have keys for nodes reachable from
    the source.

    In the case where the (di)graph is not connected, if a component
    not containing the source contains a negative cost (di)cycle, it
    will not be detected.

    """
    if source not in G:
        raise KeyError("Node %s is not found in the graph"%source)
    numb_nodes = len(G)

    dist = {source: 0}
    pred = {source: None}

    if numb_nodes == 1:
       return pred, dist

    if G.is_multigraph():
        def get_weight(edge_dict):
            return min([eattr.get(weight,1) for eattr in edge_dict.values()])
    else:
        def get_weight(edge_dict):
            return edge_dict.get(weight,1)

    for i in range(numb_nodes):
        no_changes=True
        # Only need edges from nodes in dist b/c all others have dist==inf
        for u, dist_u in list(dist.items()): # get all edges from nodes in dist
            for v, edict in G[u].items():  # double loop handles undirected too
                dist_v = dist_u + get_weight(edict)
                if v not in dist or dist[v] > dist_v:
                    dist[v] = dist_v
                    pred[v] = u
                    no_changes = False
        if no_changes:
            break
    else:
        raise nx.NetworkXUnbounded("Negative cost cycle detected.")
    return pred, dist

def negative_edge_cycle(G, weight = 'weight'):
    """Return True if there exists a negative edge cycle anywhere in G.

    Parameters
    ----------
    G : NetworkX graph

    weight: string, optional (default='weight')
       Edge data key corresponding to the edge weight

    Returns
    -------
    negative_cycle : bool
        True if a negative edge cycle exists, otherwise False.

    Examples
    --------
    >>> import networkx as nx
    >>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
    >>> print(nx.negative_edge_cycle(G))
    False
    >>> G[1][2]['weight'] = -7
    >>> print(nx.negative_edge_cycle(G))
    True

    Notes
    -----
    Edge weight attributes must be numerical.
    Distances are calculated as sums of weighted edges traversed.

    This algorithm uses bellman_ford() but finds negative cycles
    on any component by first adding a new node connected to
    every node, and starting bellman_ford on that node.  It then
    removes that extra node.
    """
    newnode = generate_unique_node()
    G.add_edges_from([ (newnode,n) for n in G])

    try:
        bellman_ford(G, newnode, weight)
    except nx.NetworkXUnbounded:
        G.remove_node(newnode)
        return True
    G.remove_node(newnode)
    return False


def bidirectional_dijkstra(G, source, target, weight = 'weight'):
    """Dijkstra's algorithm for shortest paths using bidirectional search.

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Starting node.

    target : node
       Ending node.

    weight: string, optional (default='weight')
       Edge data key corresponding to the edge weight

    Returns
    -------
    length : number
        Shortest path length.

    Returns a tuple of two dictionaries keyed by node.
    The first dictionary stores distance from the source.
    The second stores the path from the source to that node.

    Raises
    ------
    NetworkXNoPath
        If no path exists between source and target.

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> length,path=nx.bidirectional_dijkstra(G,0,4)
    >>> print(length)
    4
    >>> print(path)
    [0, 1, 2, 3, 4]

    Notes
    -----
    Edge weight attributes must be numerical.
    Distances are calculated as sums of weighted edges traversed.

    In practice  bidirectional Dijkstra is much more than twice as fast as
    ordinary Dijkstra.

    Ordinary Dijkstra expands nodes in a sphere-like manner from the
    source. The radius of this sphere will eventually be the length
    of the shortest path. Bidirectional Dijkstra will expand nodes
    from both the source and the target, making two spheres of half
    this radius. Volume of the first sphere is pi*r*r while the
    others are 2*pi*r/2*r/2, making up half the volume.

    This algorithm is not guaranteed to work if edge weights
    are negative or are floating point numbers
    (overflows and roundoff errors can cause problems).

    See Also
    --------
    shortest_path
    shortest_path_length
    """
    if source == target: return (0, [source])
    #Init:   Forward             Backward
    dists =  [{},                {}]# dictionary of final distances
    paths =  [{source:[source]}, {target:[target]}] # dictionary of paths
    fringe = [[],                []] #heap of (distance, node) tuples for extracting next node to expand
    seen =   [{source:0},        {target:0} ]#dictionary of distances to nodes seen
    #initialize fringe heap
    heapq.heappush(fringe[0], (0, source))
    heapq.heappush(fringe[1], (0, target))
    #neighs for extracting correct neighbor information
    if G.is_directed():
        neighs = [G.successors_iter, G.predecessors_iter]
    else:
        neighs = [G.neighbors_iter, G.neighbors_iter]
    #variables to hold shortest discovered path
    #finaldist = 1e30000
    finalpath = []
    dir = 1
    while fringe[0] and fringe[1]:
        # choose direction
        # dir == 0 is forward direction and dir == 1 is back
        dir = 1-dir
        # extract closest to expand
        (dist, v )= heapq.heappop(fringe[dir])
        if v in dists[dir]:
            # Shortest path to v has already been found
            continue
        # update distance
        dists[dir][v] = dist #equal to seen[dir][v]
        if v in dists[1-dir]:
            # if we have scanned v in both directions we are done
            # we have now discovered the shortest path
            return (finaldist,finalpath)

        for w in neighs[dir](v):
            if(dir==0): #forward
                if G.is_multigraph():
                    minweight=min((dd.get(weight,1)
                               for k,dd in G[v][w].items()))
                else:
                    minweight=G[v][w].get(weight,1)
                vwLength = dists[dir][v] + minweight #G[v][w].get(weight,1)
            else: #back, must remember to change v,w->w,v
                if G.is_multigraph():
                    minweight=min((dd.get(weight,1)
                               for k,dd in G[w][v].items()))
                else:
                    minweight=G[w][v].get(weight,1)
                vwLength = dists[dir][v] + minweight #G[w][v].get(weight,1)

            if w in dists[dir]:
                if vwLength < dists[dir][w]:
                    raise ValueError("Contradictory paths found: negative weights?")
            elif w not in seen[dir] or vwLength < seen[dir][w]:
                # relaxing
                seen[dir][w] = vwLength
                heapq.heappush(fringe[dir], (vwLength,w))
                paths[dir][w] = paths[dir][v]+[w]
                if w in seen[0] and w in seen[1]:
                    #see if this path is better than than the already
                    #discovered shortest path
                    totaldist = seen[0][w] + seen[1][w]
                    if finalpath == [] or finaldist > totaldist:
                        finaldist = totaldist
                        revpath = paths[1][w][:]
                        revpath.reverse()
                        finalpath = paths[0][w] + revpath[1:]
    raise nx.NetworkXNoPath("No path between %s and %s." % (source, target))