File: isomorph.py

package info (click to toggle)
python-networkx 1.7~rc1-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,128 kB
  • sloc: python: 44,557; makefile: 135
file content (223 lines) | stat: -rw-r--r-- 6,578 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""
Graph isomorphism functions.
"""
import networkx as nx
from networkx.exception import NetworkXError
__author__ = """\n""".join(['Aric Hagberg (hagberg@lanl.gov)',
                            'Pieter Swart (swart@lanl.gov)',
                            'Christopher Ellison cellison@cse.ucdavis.edu)'])
#    Copyright (C) 2004-2011 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
__all__ = ['could_be_isomorphic',
           'fast_could_be_isomorphic',
           'faster_could_be_isomorphic',
           'is_isomorphic']

def could_be_isomorphic(G1,G2):
    """Returns False if graphs are definitely not isomorphic.
    True does NOT guarantee isomorphism.

    Parameters
    ----------
    G1, G2 : NetworkX graph instances
       The two graphs G1 and G2 must be the same type.

    Notes
    -----
    Checks for matching degree, triangle, and number of cliques sequences.
    """

    # Check global properties
    if G1.order() != G2.order(): return False

    # Check local properties
    d1=G1.degree()
    t1=nx.triangles(G1)
    c1=nx.number_of_cliques(G1)
    props1=[ [d1[v], t1[v], c1[v]] for v in d1 ]
    props1.sort()

    d2=G2.degree()
    t2=nx.triangles(G2)
    c2=nx.number_of_cliques(G2)
    props2=[ [d2[v], t2[v], c2[v]] for v in d2 ]
    props2.sort()

    if props1 != props2:
        return False

    # OK...
    return True

graph_could_be_isomorphic=could_be_isomorphic

def fast_could_be_isomorphic(G1,G2):
    """Returns False if graphs are definitely not isomorphic.
    True does NOT guarantee isomorphism.

    Parameters
    ----------
    G1, G2 : NetworkX graph instances
       The two graphs G1 and G2 must be the same type.

    Notes
    -----
    Checks for matching degree and triangle sequences.
    """

    # Check global properties
    if G1.order() != G2.order(): return False

    # Check local properties
    d1=G1.degree()
    t1=nx.triangles(G1)
    props1=[ [d1[v], t1[v]] for v in d1 ]
    props1.sort()

    d2=G2.degree()
    t2=nx.triangles(G2)
    props2=[ [d2[v], t2[v]] for v in d2 ]
    props2.sort()

    if props1 != props2: return False

    # OK...
    return True

fast_graph_could_be_isomorphic=fast_could_be_isomorphic

def faster_could_be_isomorphic(G1,G2):
    """Returns False if graphs are definitely not isomorphic.
    True does NOT guarantee isomorphism.

    Parameters
    ----------
    G1, G2 : NetworkX graph instances
       The two graphs G1 and G2 must be the same type.

    Notes
    -----
    Checks for matching degree sequences.
    """

    # Check global properties
    if G1.order() != G2.order(): return False

    # Check local properties
    d1=list(G1.degree().values())
    d1.sort()
    d2=list(G2.degree().values())
    d2.sort()

    if d1 != d2: return False

    # OK...
    return True

faster_graph_could_be_isomorphic=faster_could_be_isomorphic

def is_isomorphic(G1, G2, node_match=None, edge_match=None):
    """Returns True if the graphs G1 and G2 are isomorphic and False otherwise.

    Parameters
    ----------
    G1, G2: NetworkX graph instances
        The two graphs G1 and G2 must be the same type.

    node_match : callable
        A function that returns True if node n1 in G1 and n2 in G2
        should be considered equal during the isomorphism test. 
        If None`, then no node attributes are considered when testing 
        for isomorphism.

        The function will be called like:

           node_match(G1.node[n1], G2.node[n2]).

        That is, the function will receive the node attribute dictionaries
        for  n1 and n2. 

    edge_match : callable
        A function that returns True if the edge attribute dictionary
        for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
        be considered equal during the isomorphism test.  If `None`,
        then no attributes are considered when testing for an
        isomorphism.

        The function will be called like

           edge_match(G1[u1][v1], G2[u2][v2]).

        That is, the function will receive the edge attribute dictionaries
        of the edges under consideration.

    Notes
    -----
    Uses the vf2 algorithm.
    Works for Graph, DiGraph, MultiGraph, and MultiDiGraph.

    Examples
    --------
    >>> import networkx as nx
    >>> import networkx.algorithms.isomorphism as iso

    For digraphs G1 and G2, using 'weight' edge attribute (default: 1)
    >>> G1 = nx.DiGraph()
    >>> G2 = nx.DiGraph()
    >>> G1.add_path([1,2,3,4],weight=1)
    >>> G2.add_path([10,20,30,40],weight=2)
    >>> em = iso.numerical_edge_match('weight', 1)
    >>> nx.is_isomorphic(G1, G2)  # no weights considered
    True
    >>> nx.is_isomorphic(G1, G2, edge_match=em) # match weights
    False

    For multidigraphs G1 and G2, using 'fill' node attribute (default: '')
    >>> G1 = nx.MultiDiGraph()
    >>> G2 = nx.MultiDiGraph()
    >>> G1.add_nodes_from([1,2,3],fill='red')
    >>> G2.add_nodes_from([10,20,30,40],fill='red')
    >>> G1.add_path([1,2,3,4],weight=3, linewidth=2.5)
    >>> G2.add_path([10,20,30,40],weight=3)
    >>> nm = iso.categorical_node_match('fill', 'red')
    >>> nx.is_isomorphic(G1, G2, node_match=nm)
    True

    For multidigraphs G1 and G2, using 'weight' edge attribute (default: 7)
    >>> G1.add_edge(1,2, weight=7)
    >>> G2.add_edge(10,20)
    >>> em = iso.numerical_multiedge_match('weight', 7, rtol=1e-6)
    >>> nx.is_isomorphic(G1, G2, edge_match=em)
    True

    For multigraphs G1 and G2, using 'weight' and 'linewidth' edge attributes
    with default values 7 and 2.5. Also using 'fill' node attribute with
    default value 'red'.
    >>> em = iso.numerical_multiedge_match(['weight', 'linewidth'], [7, 2.5])
    >>> nm = iso.categorical_node_match('fill', 'red')
    >>> nx.is_isomorphic(G1, G2, edge_match=em, node_match=nm)
    True

    See Also
    --------
    :mod:`vf2userfunc`, :mod:`matchelpers`
    GraphMatcher, DiGraphMatcher
    numerical_node_match, numerical_edge_match, numerical_multiedge_match
    categorical_node_match, categorical_edge_match, categorical_multiedge_match

    """
    if G1.is_directed() and G2.is_directed():
        GM = nx.algorithms.isomorphism.DiGraphMatcher
    elif (not G1.is_directed()) and (not G2.is_directed()):
        GM = nx.algorithms.isomorphism.GraphMatcher
    else:
       raise NetworkXError("Graphs G1 and G2 are not of the same type.")

    gm = GM(G1, G2, node_match=node_match, edge_match=edge_match)

    return gm.is_isomorphic()