File: binary.py

package info (click to toggle)
python-networkx 1.7~rc1-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,128 kB
  • sloc: python: 44,557; makefile: 135
file content (327 lines) | stat: -rw-r--r-- 9,010 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
"""
Operations on graphs including union, intersection, difference.
"""
#    Copyright (C) 2004-2012 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
import networkx as nx
from networkx.utils import is_string_like
__author__ = """\n""".join(['Aric Hagberg (hagberg@lanl.gov)',
                           'Pieter Swart (swart@lanl.gov)',
                           'Dan Schult(dschult@colgate.edu)'])
__all__ = ['union', 'compose', 'disjoint_union', 'intersection',
           'difference', 'symmetric_difference']

def union(G, H, rename=(None, None), name=None):
    """ Return the union of graphs G and H.

    Graphs G and H must be disjoint, otherwise an exception is raised.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph

    create_using : NetworkX graph
       Use specified graph for result.  Otherwise

    rename : bool , default=(None, None)
       Node names of G and H can be changed by specifying the tuple
       rename=('G-','H-') (for example).  Node "u" in G is then renamed
       "G-u" and "v" in H is renamed "H-v".

    name : string
       Specify the name for the union graph

    Returns
    -------
    U : A union graph with the same type as G.

    Notes
    -----
    To force a disjoint union with node relabeling, use
    disjoint_union(G,H) or convert_node_labels_to integers().

    Graph, edge, and node attributes are propagated from G and H
    to the union graph.  If a graph attribute is present in both
    G and H the value from G is used.

    See Also
    --------
    disjoint_union
    """
    # Union is the same type as G
    R = G.__class__()
    if name is None:
        name = "union( %s, %s )"%(G.name,H.name)
    R.name = name

    # rename graph to obtain disjoint node labels
    def add_prefix(graph, prefix):
        if prefix is None:
            return graph
        def label(x):
            if is_string_like(x):
                name=prefix+x
            else:
                name=prefix+repr(x)
            return name
        return nx.relabel_nodes(graph, label)
    G = add_prefix(G,rename[0])
    H = add_prefix(H,rename[1])
    if set(G) & set(H):
        raise nx.NetworkXError('The node sets of G and H are not disjoint.',
                               'Use appropriate rename=(Gprefix,Hprefix)'
                               'or use disjoint_union(G,H).')
    if G.is_multigraph():
        G_edges = G.edges_iter(keys=True, data=True)
    else:
        G_edges = G.edges_iter(data=True)
    if H.is_multigraph():
        H_edges = H.edges_iter(keys=True, data=True)
    else:
        H_edges = H.edges_iter(data=True)

    # add nodes
    R.add_nodes_from(G)
    R.add_edges_from(G_edges)
    # add edges
    R.add_nodes_from(H)
    R.add_edges_from(H_edges)
    # add node attributes
    R.node.update(G.node)
    R.node.update(H.node)
    # add graph attributes, G attributes take precedent over H attributes
    R.graph.update(H.graph)
    R.graph.update(G.graph)

    return R

def disjoint_union(G,H):
    """ Return the disjoint union of graphs G and H,
    forcing distinct integer node labels.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph

    Returns
    -------
    U : A union graph with the same type as G.

    Notes
    -----
    A new graph is created, of the same class as G.  It is recommended
    that G and H be either both directed or both undirected.

    The nodes of G are relabeled 0 to len(G)-1, and the nodes of H are
    relabeld len(G) to len(G)+len(H)-1.
    """
    R1=nx.convert_node_labels_to_integers(G)
    R2=nx.convert_node_labels_to_integers(H,first_label=len(R1))
    R=union(R1,R2)
    R.name="disjoint_union( %s, %s )"%(G.name,H.name)
    return R


def intersection(G, H):
    """Return a new graph that contains only the edges that exist in
    both G and H.

    The node sets of H and G must be the same.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph.  G and H must have the same node sets.

    Returns
    -------
    GH : A new graph with the same type as G.

    Notes
    -----
    Attributes from the graph, nodes, and edges are not copied to the new
    graph.  If you want a new graph of the intersection of G and H
    with the attributes (including edge data) from G use remove_nodes_from()
    as follows

    >>> G=nx.path_graph(3)
    >>> H=nx.path_graph(5)
    >>> R=G.copy()
    >>> R.remove_nodes_from(n for n in G if n not in H)
    """
    # create new graph
    R=nx.create_empty_copy(G)

    R.name="Intersection of (%s and %s)"%(G.name, H.name)

    if set(G)!=set(H):
        raise nx.NetworkXError("Node sets of graphs are not equal")

    if G.number_of_edges()<=H.number_of_edges():
        if G.is_multigraph():
            edges=G.edges_iter(keys=True)
        else:
            edges=G.edges_iter()
        for e in edges:
            if H.has_edge(*e):
                R.add_edge(*e)
    else:
        if H.is_multigraph():
            edges=H.edges_iter(keys=True)
        else:
            edges=H.edges_iter()
        for e in edges:
            if G.has_edge(*e):
                R.add_edge(*e)

    return R

def difference(G, H):
    """Return a new graph that contains the edges that exist in G
    but not in H.

    The node sets of H and G must be the same.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph.  G and H must have the same node sets.

    Returns
    -------
    GH : A new graph with the same type as G.

    Notes
    -----
    Attributes from the graph, nodes, and edges are not copied to the new
    graph.  If you want a new graph of the difference of G and H with
    with the attributes (including edge data) from G use remove_nodes_from()
    as follows

    >>> G=nx.path_graph(3)
    >>> H=nx.path_graph(5)
    >>> R=G.copy()
    >>> R.remove_nodes_from(n for n in G if n in H)

    """
    # create new graph
    R=nx.create_empty_copy(G)
    R.name="Difference of (%s and %s)"%(G.name, H.name)

    if set(G)!=set(H):
        raise nx.NetworkXError("Node sets of graphs not equal")

    if G.is_multigraph():
        edges=G.edges_iter(keys=True)
    else:
        edges=G.edges_iter()
    for e in edges:
        if not H.has_edge(*e):
            R.add_edge(*e)
    return R

def symmetric_difference(G, H):
    """Return new graph with edges that exist in either G or H but not both.

    The node sets of H and G must be the same.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph.  G and H must have the same node sets.

    Returns
    -------
    GH : A new graph with the same type as G.

    Notes
    -----
    Attributes from the graph, nodes, and edges are not copied to the new
    graph.
    """
    # create new graph
    R=nx.create_empty_copy(G)
    R.name="Symmetric difference of (%s and %s)"%(G.name, H.name)

    if set(G)!=set(H):
        raise nx.NetworkXError("Node sets of graphs not equal")

    gnodes=set(G) # set of nodes in G
    hnodes=set(H) # set of nodes in H
    nodes=gnodes.symmetric_difference(hnodes)
    R.add_nodes_from(nodes)

    if G.is_multigraph():
        edges=G.edges_iter(keys=True)
    else:
        edges=G.edges_iter()
    # we could copy the data here but then this function doesn't
    # match intersection and difference
    for e in edges:
        if not H.has_edge(*e):
            R.add_edge(*e)

    if H.is_multigraph():
        edges=H.edges_iter(keys=True)
    else:
        edges=H.edges_iter()
    for e in edges:
        if not G.has_edge(*e):
            R.add_edge(*e)
    return R

def compose(G, H, name=None):
    """Return a new graph of G composed with H.

    Composition is the simple union of the node sets and edge sets.
    The node sets of G and H need not be disjoint.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph

    name : string
       Specify name for new graph


    Returns
    -------
    GH: A new graph  with the same type as G

    Notes
    -----
    A new graph is returned, of the same class as G.  It is
    recommended that G and H be either both directed or both
    undirected.  Attributes from G take precedent over attributes
    from H.
    """
    if name is None:
        name="compose( %s, %s )"%(G.name,H.name)
    R=G.__class__()
    R.name=name
    R.add_nodes_from(H.nodes())
    R.add_nodes_from(G.nodes())
    if H.is_multigraph():
        R.add_edges_from(H.edges_iter(keys=True,data=True))
    else:
        R.add_edges_from(H.edges_iter(data=True))
    if G.is_multigraph():
        R.add_edges_from(G.edges_iter(keys=True,data=True))
    else:
        R.add_edges_from(G.edges_iter(data=True))

    # add node attributes, G attributes take precedent over H attributes
    R.node.update(H.node)
    R.node.update(G.node)
    # add graph attributes, G attributes take precedent over H attributes
    R.graph.update(H.graph)
    R.graph.update(G.graph)

    return R