File: test_dag.py

package info (click to toggle)
python-networkx 1.7~rc1-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,128 kB
  • sloc: python: 44,557; makefile: 135
file content (136 lines) | stat: -rw-r--r-- 4,524 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python
from nose.tools import *
import networkx as nx

class TestDAG:

    def setUp(self):
        pass

    def test_topological_sort1(self):
        DG=nx.DiGraph()
        DG.add_edges_from([(1,2),(1,3),(2,3)])
        assert_equal(nx.topological_sort(DG),[1, 2, 3])
        assert_equal(nx.topological_sort_recursive(DG),[1, 2, 3])

        DG.add_edge(3,2)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort, DG)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort_recursive, DG)
        
        DG.remove_edge(2,3)
        assert_equal(nx.topological_sort(DG),[1, 3, 2])
        assert_equal(nx.topological_sort_recursive(DG),[1, 3, 2])

    def test_topological_sort2(self):
        DG=nx.DiGraph({1:[2],2:[3],3:[4],
                       4:[5],5:[1],11:[12],
                       12:[13],13:[14],14:[15]})
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort, DG)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort_recursive, DG)

        assert_false(nx.is_directed_acyclic_graph(DG))

        DG.remove_edge(1,2)
        assert_equal(nx.topological_sort_recursive(DG),
                     [11, 12, 13, 14, 15, 2, 3, 4, 5, 1])
        assert_equal(nx.topological_sort(DG),
                     [11, 12, 13, 14, 15, 2, 3, 4, 5, 1])
        assert_true(nx.is_directed_acyclic_graph(DG))

    def test_topological_sort3(self):
        DG=nx.DiGraph()
        DG.add_edges_from([(1,i) for i in range(2,5)])
        DG.add_edges_from([(2,i) for i in range(5,9)])
        DG.add_edges_from([(6,i) for i in range(9,12)])
        DG.add_edges_from([(4,i) for i in range(12,15)])
        assert_equal(nx.topological_sort_recursive(DG),
                     [1, 4, 14, 13, 12, 3, 2, 7, 6, 11, 10, 9, 5, 8])
        assert_equal(nx.topological_sort(DG),
                     [1, 2, 8, 5, 6, 9, 10, 11, 7, 3, 4, 12, 13, 14])

        DG.add_edge(14,1)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort, DG)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort_recursive, DG)

    def test_topological_sort4(self):
        G=nx.Graph()
        G.add_edge(1,2)
        assert_raises(nx.NetworkXError, nx.topological_sort, G)
        assert_raises(nx.NetworkXError, nx.topological_sort_recursive, G)

    def test_topological_sort5(self):
        G=nx.DiGraph()
        G.add_edge(0,1)
        assert_equal(nx.topological_sort_recursive(G), [0,1])
        assert_equal(nx.topological_sort(G), [0,1])

    def test_nbunch_argument(self):
        G=nx.DiGraph()
        G.add_edges_from([(1,2), (2,3), (1,4), (1,5), (2,6)])
        assert_equal(nx.topological_sort(G), [1, 2, 3, 6, 4, 5])
        assert_equal(nx.topological_sort_recursive(G), [1, 5, 4, 2, 6, 3])
        assert_equal(nx.topological_sort(G,[1]), [1, 2, 3, 6, 4, 5])
        assert_equal(nx.topological_sort_recursive(G,[1]), [1, 5, 4, 2, 6, 3])
        assert_equal(nx.topological_sort(G,[5]), [5])
        assert_equal(nx.topological_sort_recursive(G,[5]), [5])


def test_is_aperiodic_cycle():
    G=nx.DiGraph()
    G.add_cycle([1,2,3,4])
    assert_false(nx.is_aperiodic(G))

def test_is_aperiodic_cycle2():
    G=nx.DiGraph()
    G.add_cycle([1,2,3,4])
    G.add_cycle([3,4,5,6,7])
    assert_true(nx.is_aperiodic(G))

def test_is_aperiodic_cycle3():
    G=nx.DiGraph()
    G.add_cycle([1,2,3,4])
    G.add_cycle([3,4,5,6])
    assert_false(nx.is_aperiodic(G))
    
def test_is_aperiodic_cycle4():
    G = nx.DiGraph()
    G.add_cycle([1,2,3,4])
    G.add_edge(1,3)
    assert_true(nx.is_aperiodic(G))

def test_is_aperiodic_selfloop():
    G = nx.DiGraph()
    G.add_cycle([1,2,3,4])
    G.add_edge(1,1)
    assert_true(nx.is_aperiodic(G))

def test_is_aperiodic_raise():
    G = nx.Graph()
    assert_raises(nx.NetworkXError,
                  nx.is_aperiodic,
                  G)

def test_is_aperiodic_bipartite():
    #Bipartite graph
    G = nx.DiGraph(nx.davis_southern_women_graph())
    assert_false(nx.is_aperiodic(G))

def test_is_aperiodic_rary_tree():
    G = nx.full_rary_tree(3,27,create_using=nx.DiGraph())
    assert_false(nx.is_aperiodic(G))

def test_is_aperiodic_disconnected():
    #disconnected graph
    G = nx.DiGraph()
    G.add_cycle([1,2,3,4])
    G.add_cycle([5,6,7,8])
    assert_false(nx.is_aperiodic(G))
    G.add_edge(1,3)
    G.add_edge(5,7)
    assert_true(nx.is_aperiodic(G))
    
def test_is_aperiodic_disconnected2():
    G = nx.DiGraph()
    G.add_cycle([0,1,2])
    G.add_edge(3,3)
    assert_false(nx.is_aperiodic(G))