1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
*********************************
Version 1.0 notes and API changes
*********************************
We have made some significant API changes, detailed below, to add
functionality and clarity. This page reflects changes from
networkx-0.99 to networkx-1.0. For changes from earlier versions to
networkx-0.99 see :doc:`Version 0.99 API changes <api_0.99>`.
Version 1.0 requires Python 2.4 or greater.
Please send comments and questions to the networkx-discuss mailing list:
http://groups.google.com/group/networkx-discuss .
Version numbering
=================
In the future we will use a more standard release numbering system
with major.minor[build] labels where major and minor are numbers and
[build] is a label such as "dev1379" to indicate a development version
or "rc1" to indicate a release candidate.
We plan on sticking closer to a time-based release schedule with smaller
incremental changes released on a roughly quarterly basis. The graph
classes API will remain fixed, unless we determine there are serious
bugs or other defects in the existing classes, until networkx-2.0 is
released at some time in the future.
Changes in base classes
=======================
The most significant changes in are in the graph classes. All of the
graph classes now allow optional graph, node, and edge attributes. Those
attributes are stored internally in the graph classes as dictionaries
and can be accessed simply like Python dictionaries in most cases.
Graph attributes
----------------
Each graph keeps a dictionary of key=value attributes
in the member G.graph. These attributes can be accessed
directly using G.graph or added at instantiation using
keyword arguments.
>>> G=nx.Graph(region='Africa')
>>> G.graph['color']='green'
>>> G.graph
{'color': 'green', 'region': 'Africa'}
Node attributes
---------------
Each node has a corresponding dictionary of attributes.
Adding attributes to nodes is optional.
Add node attributes using add_node(), add_nodes_from() or G.node
>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> G.nodes(data=True)
[(1, {'room': 714, 'time': '5pm'}), (3, {'time': '2pm'})]
Edge attributes
---------------
Each edge has a corresponding dictionary of attributes.
The default edge data is now an empty dictionary of attributes
and adding attributes to edges is optional.
A common use case is to add a weight attribute to an edge:
>>> G.add_edge(1,2,weight=3.14159)
Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edge.
>>> G.add_edge(1, 2, weight=4.7 )
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4
Methods changed
---------------
Graph(), DiGraph(), MultiGraph(), MultiDiGraph()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Now takes optional keyword=value attributes on initialization.
>>> G=nx.Graph(year='2009',city='New York')
add_node()
^^^^^^^^^^
Now takes optional keyword=value attributes or a dictionary of attributes.
>>> G.add_node(1,room=714)
add_nodes_from()
^^^^^^^^^^^^^^^^
Now takes optional keyword=value attributes or a dictionary of
attributes applied to all affected nodes.
>>> G.add_nodes_from([1,2],time='2pm') # all nodes have same attribute
add_edge()
^^^^^^^^^^
Now takes optional keyword=value attributes or a dictionary of attributes.
>>> G.add_edge(1, 2, weight=4.7 )
add_edges_from()
^^^^^^^^^^^^^^^^
Now takes optional keyword=value attributes or a dictionary of
attributes applied to all affected edges.
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
nodes() and nodes_iter()
^^^^^^^^^^^^^^^^^^^^^^^^
New keyword data=True|False keyword determines whether to return
two-tuples (n,dict) (True) with node attribution dictionary
>>> G=nx.Graph([(1,2),(3,4)])
>>> G.nodes(data=True)
[(1, {}), (2, {}), (3, {}), (4, {})]
copy()
^^^^^^
Now returns a deep copy of the graph (copies all underlying
data and attributes for nodes and edges). Use the class
initializer to make a shallow copy:
>>> G=nx.Graph()
>>> G_shallow=nx.Graph(G) # shallow copy
>>> G_deep=G.copy() # deep copy
to_directed(), to_undirected()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Now returns a deep copy of the graph (copies all underlying
data and attributes for nodes and edges). Use the class
initializer to make a shallow copy:
>>> G=nx.Graph()
>>> D_shallow=nx.DiGraph(G) # shallow copy
>>> D_deep=G.to_directed() # deep copy
subgraph()
^^^^^^^^^^
With copy=True now returns a deep copy of the graph
(copies all underlying data and attributes for nodes and edges).
>>> G=nx.Graph()
>>> # note: copy keyword deprecated in networkx>1.0
>>> # H=G.subgraph([],copy=True) # deep copy of all data
add_cycle(), add_path(), add_star()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Now take optional keyword=value attributes or a dictionary of
attributes which are applied to all edges affected by the method.
>>> G=nx.Graph()
>>> G.add_path([0,1,2,3],width=3.2)
Methods removed
---------------
delete_node()
^^^^^^^^^^^^^
The preferred name is now remove_node().
delete_nodes_from()
^^^^^^^^^^^^^^^^^^^
No longer raises an exception on an attempt to delete a node not in
the graph. The preferred name is now remove_nodes_from().
delete_edge()
^^^^^^^^^^^^^
Now raises an exception on an attempt to delete an edge not in the graph.
The preferred name is now remove_edge().
delete_edges_from()
^^^^^^^^^^^^^^^^^^^
The preferred name is now remove_edges_from().
has_neighbor():
Use has_edge()
get_edge()
^^^^^^^^^^
Renamed to get_edge_data(). Returns the edge attribute dictionary.
The fastest way to get edge data for edge (u,v) is to use G[u][v]
instead of G.get_edge_data(u,v)
Members removed
---------------
directed, multigraph, weighted
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use methods G.is_directed() and G.is_multigraph().
All graphs are weighted graphs now if they have numeric
values in the 'weight' edge attribute.
Methods added
-------------
add_weighted edges_from()
^^^^^^^^^^^^^^^^^^^^^^^^^
Convenience method to add weighted edges to graph using a list of
3-tuples (u,v,weight).
get_edge_data()
^^^^^^^^^^^^^^^
Renamed from get_edge().
The fastest way to get edge data for edge (u,v) is to use G[u][v]
instead of G.get_edge_data(u,v)
is_directed()
^^^^^^^^^^^^^
replaces member G.directed
is_multigraph()
^^^^^^^^^^^^^^^
replaces member G.multigraph
Classes Removed
---------------
LabeledGraph, LabeledDiGraph
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
These classes have been folded into the regular classes.
UbiGraph
^^^^^^^^
Removed as the ubigraph platform is no longer being supported.
Additional functions/generators
===============================
ego_graph, stochastic_graph, PageRank algorithm, HITS algorithm,
GraphML writer, freeze, is_frozen, A* algorithm,
directed scale-free generator, random clustered graph.
Converting your existing code to networkx-1.0
=============================================
Weighted edges
--------------
Edge information is now stored in an attribution dictionary
so all edge data must be given a key to identify it.
There is currently only one standard/reserved key, 'weight', which is
used by algorithms and functions that use weighted edges. The
associated value should be numeric. All other keys are available for
users to assign as needed.
>>> G=nx.Graph()
>>> G.add_edge(1,2,weight=3.1415) # add the edge 1-2 with a weight
>>> G[1][2]['weight']=2.3 # set the weight to 2.3
Similarly, for direct access the edge data, use
the key of the edge data to retrieve it.
>>> w = G[1][2]['weight']
All NetworkX algorithms that require/use weighted edges now use the
'weight' edge attribute. If you have existing algorithms that assumed
the edge data was numeric, you should replace G[u][v] and
G.get_edge(u,v) with G[u][v]['weight'].
An idiom for getting a weight for graphs with or without an assigned
weight key is
>>> w= G[1][2].get('weight',1) # set w to 1 if there is no 'weight' key
|