1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
"""
Eigenvector centrality.
"""
# Copyright (C) 2004-2014 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
import networkx as nx
__author__ = "\n".join(['Aric Hagberg (aric.hagberg@gmail.com)',
'Pieter Swart (swart@lanl.gov)',
'Sasha Gutfraind (ag362@cornell.edu)'])
__all__ = ['eigenvector_centrality',
'eigenvector_centrality_numpy']
def eigenvector_centrality(G, max_iter=100, tol=1.0e-6, nstart=None,
weight='weight'):
"""Compute the eigenvector centrality for the graph G.
Uses the power method to find the eigenvector for the
largest eigenvalue of the adjacency matrix of G.
Parameters
----------
G : graph
A networkx graph
max_iter : interger, optional
Maximum number of iterations in power method.
tol : float, optional
Error tolerance used to check convergence in power method iteration.
nstart : dictionary, optional
Starting value of eigenvector iteration for each node.
weight : None or string, optional
If None, all edge weights are considered equal.
Otherwise holds the name of the edge attribute used as weight.
Returns
-------
nodes : dictionary
Dictionary of nodes with eigenvector centrality as the value.
Examples
--------
>>> G = nx.path_graph(4)
>>> centrality = nx.eigenvector_centrality(G)
>>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality])
['0 0.37', '1 0.60', '2 0.60', '3 0.37']
Notes
------
The eigenvector calculation is done by the power iteration method
and has no guarantee of convergence. The iteration will stop
after max_iter iterations or an error tolerance of
number_of_nodes(G)*tol has been reached.
For directed graphs this is "left" eigevector centrality which corresponds
to the in-edges in the graph. For out-edges eigenvector centrality
first reverse the graph with G.reverse().
See Also
--------
eigenvector_centrality_numpy
pagerank
hits
"""
from math import sqrt
if type(G) == nx.MultiGraph or type(G) == nx.MultiDiGraph:
raise nx.NetworkXException("Not defined for multigraphs.")
if len(G) == 0:
raise nx.NetworkXException("Empty graph.")
if nstart is None:
# choose starting vector with entries of 1/len(G)
x = dict([(n,1.0/len(G)) for n in G])
else:
x = nstart
# normalize starting vector
s = 1.0/sum(x.values())
for k in x:
x[k] *= s
nnodes = G.number_of_nodes()
# make up to max_iter iterations
for i in range(max_iter):
xlast = x
x = dict.fromkeys(xlast, 0)
# do the multiplication y^T = x^T A
for n in x:
for nbr in G[n]:
x[nbr] += xlast[n] * G[n][nbr].get(weight, 1)
# normalize vector
try:
s = 1.0/sqrt(sum(v**2 for v in x.values()))
# this should never be zero?
except ZeroDivisionError:
s = 1.0
for n in x:
x[n] *= s
# check convergence
err = sum([abs(x[n]-xlast[n]) for n in x])
if err < nnodes*tol:
return x
raise nx.NetworkXError("""eigenvector_centrality():
power iteration failed to converge in %d iterations."%(i+1))""")
def eigenvector_centrality_numpy(G, weight='weight'):
"""Compute the eigenvector centrality for the graph G.
Parameters
----------
G : graph
A networkx graph
weight : None or string, optional
The name of the edge attribute used as weight.
If None, all edge weights are considered equal.
Returns
-------
nodes : dictionary
Dictionary of nodes with eigenvector centrality as the value.
Examples
--------
>>> G = nx.path_graph(4)
>>> centrality = nx.eigenvector_centrality_numpy(G)
>>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality])
['0 0.37', '1 0.60', '2 0.60', '3 0.37']
Notes
------
This algorithm uses the SciPy sparse eigenvalue solver (ARPACK) to
find the largest eigenvalue/eigenvector pair.
For directed graphs this is "left" eigevector centrality which corresponds
to the in-edges in the graph. For out-edges eigenvector centrality
first reverse the graph with G.reverse().
See Also
--------
eigenvector_centrality
pagerank
hits
"""
import scipy as sp
from scipy.sparse import linalg
if len(G) == 0:
raise nx.NetworkXException('Empty graph.')
M = nx.to_scipy_sparse_matrix(G, nodelist=G.nodes(), weight=weight,
dtype=float)
eigenvalue, eigenvector = linalg.eigs(M.T, k=1, which='LR')
largest = eigenvector.flatten().real
norm = sp.sign(largest.sum())*sp.linalg.norm(largest)
centrality = dict(zip(G,map(float,largest/norm)))
return centrality
# fixture for nose tests
def setup_module(module):
from nose import SkipTest
try:
import scipy
except:
raise SkipTest("SciPy not available")
|