1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
"""PageRank analysis of graph structure. """
# Copyright (C) 2004-2013 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
# NetworkX:http://networkx.lanl.gov/
import networkx as nx
from networkx.exception import NetworkXError
from networkx.utils import not_implemented_for
__author__ = """\n""".join(["Aric Hagberg <aric.hagberg@gmail.com>",
"Brandon Liu <brandon.k.liu@gmail.com"])
__all__ = ['pagerank', 'pagerank_numpy', 'pagerank_scipy', 'google_matrix']
@not_implemented_for('multigraph')
def pagerank(G, alpha=0.85, personalization=None,
max_iter=100, tol=1.0e-6, nstart=None, weight='weight',
dangling=None):
"""Return the PageRank of the nodes in the graph.
PageRank computes a ranking of the nodes in the graph G based on
the structure of the incoming links. It was originally designed as
an algorithm to rank web pages.
Parameters
-----------
G : graph
A NetworkX graph. Undirected graphs will be converted to a directed
graph with two directed edges for each undirected edge.
alpha : float, optional
Damping parameter for PageRank, default=0.85.
personalization: dict, optional
The "personalization vector" consisting of a dictionary with a
key for every graph node and nonzero personalization value for each node.
By default, a uniform distribution is used.
max_iter : integer, optional
Maximum number of iterations in power method eigenvalue solver.
tol : float, optional
Error tolerance used to check convergence in power method solver.
nstart : dictionary, optional
Starting value of PageRank iteration for each node.
weight : key, optional
Edge data key to use as weight. If None weights are set to 1.
dangling: dict, optional
The outedges to be assigned to any "dangling" nodes, i.e., nodes without
any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given
outedges according to the personalization vector (uniform if not
specified). This must be selected to result in an irreducible transition
matrix (see notes under google_matrix). It may be common to have the
dangling dict to be the same as the personalization dict.
Returns
-------
pagerank : dictionary
Dictionary of nodes with PageRank as value
Examples
--------
>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank(G, alpha=0.9)
Notes
-----
The eigenvector calculation is done by the power iteration method
and has no guarantee of convergence. The iteration will stop
after max_iter iterations or an error tolerance of
number_of_nodes(G)*tol has been reached.
The PageRank algorithm was designed for directed graphs but this
algorithm does not check if the input graph is directed and will
execute on undirected graphs by converting each edge in the
directed graph to two edges.
See Also
--------
pagerank_numpy, pagerank_scipy, google_matrix
References
----------
.. [1] A. Langville and C. Meyer,
"A survey of eigenvector methods of web information retrieval."
http://citeseer.ist.psu.edu/713792.html
.. [2] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry,
The PageRank citation ranking: Bringing order to the Web. 1999
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf
"""
if len(G) == 0:
return {}
if not G.is_directed():
D = G.to_directed()
else:
D = G
# Create a copy in (right) stochastic form
W = nx.stochastic_graph(D, weight=weight)
N = W.number_of_nodes()
# Choose fixed starting vector if not given
if nstart is None:
x = dict.fromkeys(W, 1.0 / N)
else:
# Normalized nstart vector
s = float(sum(nstart.values()))
x = dict((k, v / s) for k, v in nstart.items())
if personalization is None:
# Assign uniform personalization vector if not given
p = dict.fromkeys(W, 1.0 / N)
else:
missing = set(G) - set(personalization)
if missing:
raise NetworkXError('Personalization dictionary '
'must have a value for every node. '
'Missing nodes %s' % missing)
s = float(sum(personalization.values()))
p = dict((k, v / s) for k, v in personalization.items())
if dangling is None:
# Use personalization vector if dangling vector not specified
dangling_weights = p
else:
missing = set(G) - set(dangling)
if missing:
raise NetworkXError('Dangling node dictionary '
'must have a value for every node. '
'Missing nodes %s' % missing)
s = float(sum(dangling.values()))
dangling_weights = dict((k, v/s) for k, v in dangling.items())
dangling_nodes = [n for n in W if W.out_degree(n, weight=weight) == 0.0]
# power iteration: make up to max_iter iterations
for _ in range(max_iter):
xlast = x
x = dict.fromkeys(xlast.keys(), 0)
danglesum = alpha * sum(xlast[n] for n in dangling_nodes)
for n in x:
# this matrix multiply looks odd because it is
# doing a left multiply x^T=xlast^T*W
for nbr in W[n]:
x[nbr] += alpha * xlast[n] * W[n][nbr][weight]
x[n] += danglesum * dangling_weights[n] + (1.0 - alpha) * p[n]
# check convergence, l1 norm
err = sum([abs(x[n] - xlast[n]) for n in x])
if err < N*tol:
return x
raise NetworkXError('pagerank: power iteration failed to converge '
'in %d iterations.' % max_iter)
def google_matrix(G, alpha=0.85, personalization=None,
nodelist=None, weight='weight', dangling=None):
"""Return the Google matrix of the graph.
Parameters
-----------
G : graph
A NetworkX graph. Undirected graphs will be converted to a directed
graph with two directed edges for each undirected edge.
alpha : float
The damping factor.
personalization: dict, optional
The "personalization vector" consisting of a dictionary with a
key for every graph node and nonzero personalization value for each node.
By default, a uniform distribution is used.
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().
weight : key, optional
Edge data key to use as weight. If None weights are set to 1.
dangling: dict, optional
The outedges to be assigned to any "dangling" nodes, i.e., nodes without
any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given
outedges according to the personalization vector (uniform if not
specified) This must be selected to result in an irreducible transition
matrix (see notes below). It may be common to have the dangling dict to
be the same as the personalization dict.
Returns
-------
A : NumPy matrix
Google matrix of the graph
Notes
-----
The matrix returned represents the transition matrix that describes the
Markov chain used in PageRank. For PageRank to converge to a unique
solution (i.e., a unique stationary distribution in a Markov chain), the
transition matrix must be irreducible. In other words, it must be that
there exists a path between every pair of nodes in the graph, or else there
is the potential of "rank sinks."
This implementation works with Multi(Di)Graphs. For multigraphs the
weight between two nodes is set to be the sum of all edge weights
between those nodes.
See Also
--------
pagerank, pagerank_numpy, pagerank_scipy
"""
import numpy as np
if nodelist is None:
nodelist = G.nodes()
M = nx.to_numpy_matrix(G, nodelist=nodelist, weight=weight)
N = len(G)
if N == 0:
return M
# Personalization vector
if personalization is None:
p = np.repeat(1.0 / N, N)
else:
missing = set(nodelist) - set(personalization)
if missing:
raise NetworkXError('Personalization vector dictionary '
'must have a value for every node. '
'Missing nodes %s' % missing)
p = np.array([personalization[n] for n in nodelist], dtype=float)
p /= p.sum()
# Dangling nodes
if dangling is None:
dangling_weights = p
else:
missing = set(nodelist) - set(dangling)
if missing:
raise NetworkXError('Dangling node dictionary '
'must have a value for every node. '
'Missing nodes %s' % missing)
# Convert the dangling dictionary into an array in nodelist order
dangling_weights = np.array([dangling[n] for n in nodelist],
dtype=float)
dangling_weights /= dangling_weights.sum()
dangling_nodes = np.where(M.sum(axis=1) == 0)[0]
# Assign dangling_weights to any dangling nodes (nodes with no out links)
for node in dangling_nodes:
M[node] = dangling_weights
M /= M.sum(axis=1) # Normalize rows to sum to 1
return alpha * M + (1 - alpha) * np.outer(np.ones(N), p)
def pagerank_numpy(G, alpha=0.85, personalization=None, weight='weight',
dangling=None):
"""Return the PageRank of the nodes in the graph.
PageRank computes a ranking of the nodes in the graph G based on
the structure of the incoming links. It was originally designed as
an algorithm to rank web pages.
Parameters
-----------
G : graph
A NetworkX graph. Undirected graphs will be converted to a directed
graph with two directed edges for each undirected edge.
alpha : float, optional
Damping parameter for PageRank, default=0.85.
personalization: dict, optional
The "personalization vector" consisting of a dictionary with a
key for every graph node and nonzero personalization value for each
node. By default, a uniform distribution is used.
weight : key, optional
Edge data key to use as weight. If None weights are set to 1.
dangling: dict, optional
The outedges to be assigned to any "dangling" nodes, i.e., nodes without
any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given
outedges according to the personalization vector (uniform if not
specified) This must be selected to result in an irreducible transition
matrix (see notes under google_matrix). It may be common to have the
dangling dict to be the same as the personalization dict.
Returns
-------
pagerank : dictionary
Dictionary of nodes with PageRank as value.
Examples
--------
>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank_numpy(G, alpha=0.9)
Notes
-----
The eigenvector calculation uses NumPy's interface to the LAPACK
eigenvalue solvers. This will be the fastest and most accurate
for small graphs.
This implementation works with Multi(Di)Graphs. For multigraphs the
weight between two nodes is set to be the sum of all edge weights
between those nodes.
See Also
--------
pagerank, pagerank_scipy, google_matrix
References
----------
.. [1] A. Langville and C. Meyer,
"A survey of eigenvector methods of web information retrieval."
http://citeseer.ist.psu.edu/713792.html
.. [2] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry,
The PageRank citation ranking: Bringing order to the Web. 1999
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf
"""
import numpy as np
if len(G) == 0:
return {}
M = google_matrix(G, alpha, personalization=personalization,
weight=weight, dangling=dangling)
# use numpy LAPACK solver
eigenvalues, eigenvectors = np.linalg.eig(M.T)
ind = eigenvalues.argsort()
# eigenvector of largest eigenvalue at ind[-1], normalized
largest = np.array(eigenvectors[:, ind[-1]]).flatten().real
norm = float(largest.sum())
return dict(zip(G, map(float, largest / norm)))
def pagerank_scipy(G, alpha=0.85, personalization=None,
max_iter=100, tol=1.0e-6, weight='weight',
dangling=None):
"""Return the PageRank of the nodes in the graph.
PageRank computes a ranking of the nodes in the graph G based on
the structure of the incoming links. It was originally designed as
an algorithm to rank web pages.
Parameters
-----------
G : graph
A NetworkX graph. Undirected graphs will be converted to a directed
graph with two directed edges for each undirected edge.
alpha : float, optional
Damping parameter for PageRank, default=0.85.
personalization: dict, optional
The "personalization vector" consisting of a dictionary with a
key for every graph node and nonzero personalization value for each
node. By default, a uniform distribution is used.
max_iter : integer, optional
Maximum number of iterations in power method eigenvalue solver.
tol : float, optional
Error tolerance used to check convergence in power method solver.
weight : key, optional
Edge data key to use as weight. If None weights are set to 1.
dangling: dict, optional
The outedges to be assigned to any "dangling" nodes, i.e., nodes without
any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given
outedges according to the personalization vector (uniform if not
specified) This must be selected to result in an irreducible transition
matrix (see notes under google_matrix). It may be common to have the
dangling dict to be the same as the personalization dict.
Returns
-------
pagerank : dictionary
Dictionary of nodes with PageRank as value
Examples
--------
>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank_scipy(G, alpha=0.9)
Notes
-----
The eigenvector calculation uses power iteration with a SciPy
sparse matrix representation.
This implementation works with Multi(Di)Graphs. For multigraphs the
weight between two nodes is set to be the sum of all edge weights
between those nodes.
See Also
--------
pagerank, pagerank_numpy, google_matrix
References
----------
.. [1] A. Langville and C. Meyer,
"A survey of eigenvector methods of web information retrieval."
http://citeseer.ist.psu.edu/713792.html
.. [2] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry,
The PageRank citation ranking: Bringing order to the Web. 1999
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf
"""
import scipy.sparse
N = len(G)
if N == 0:
return {}
nodelist = G.nodes()
M = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, weight=weight,
dtype=float)
S = scipy.array(M.sum(axis=1)).flatten()
S[S != 0] = 1.0 / S[S != 0]
Q = scipy.sparse.spdiags(S.T, 0, *M.shape, format='csr')
M = Q * M
# initial vector
x = scipy.repeat(1.0 / N, N)
# Personalization vector
if personalization is None:
p = scipy.repeat(1.0 / N, N)
else:
missing = set(nodelist) - set(personalization)
if missing:
raise NetworkXError('Personalization vector dictionary '
'must have a value for every node. '
'Missing nodes %s' % missing)
p = scipy.array([personalization[n] for n in nodelist],
dtype=float)
p = p / p.sum()
# Dangling nodes
if dangling is None:
dangling_weights = p
else:
missing = set(nodelist) - set(dangling)
if missing:
raise NetworkXError('Dangling node dictionary '
'must have a value for every node. '
'Missing nodes %s' % missing)
# Convert the dangling dictionary into an array in nodelist order
dangling_weights = scipy.array([dangling[n] for n in nodelist],
dtype=float)
dangling_weights /= dangling_weights.sum()
is_dangling = scipy.where(S == 0)[0]
# power iteration: make up to max_iter iterations
for _ in range(max_iter):
xlast = x
x = alpha * (x * M + sum(x[is_dangling]) * dangling_weights) + \
(1 - alpha) * p
# check convergence, l1 norm
err = scipy.absolute(x - xlast).sum()
if err < N * tol:
return dict(zip(nodelist, map(float, x)))
raise NetworkXError('pagerank_scipy: power iteration failed to converge '
'in %d iterations.' % max_iter)
# fixture for nose tests
def setup_module(module):
from nose import SkipTest
try:
import numpy
except:
raise SkipTest("NumPy not available")
try:
import scipy
except:
raise SkipTest("SciPy not available")
|