File: simple_paths.py

package info (click to toggle)
python-networkx 1.9%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 5,052 kB
  • ctags: 3,986
  • sloc: python: 52,132; makefile: 176
file content (124 lines) | stat: -rw-r--r-- 3,813 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# -*- coding: utf-8 -*-
#    Copyright (C) 2012 by
#    Sergio Nery Simoes <sergionery@gmail.com>
#    All rights reserved.
#    BSD license.
import networkx as nx
__author__ = """\n""".join(['Sérgio Nery Simões <sergionery@gmail.com>',
                            'Aric Hagberg <aric.hagberg@gmail.com>'])
__all__ = ['all_simple_paths']

def all_simple_paths(G, source, target, cutoff=None):
    """Generate all simple paths in the graph G from source to target.

    A simple path is a path with no repeated nodes.

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Starting node for path

    target : node
       Ending node for path

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    path_generator: generator
       A generator that produces lists of simple paths.  If there are no paths
       between the source and target within the given cutoff the generator
       produces no output.

    Examples
    --------
    >>> G = nx.complete_graph(4)
    >>> for path in nx.all_simple_paths(G, source=0, target=3):
    ...     print(path)
    ...
    [0, 1, 2, 3]
    [0, 1, 3]
    [0, 2, 1, 3]
    [0, 2, 3]
    [0, 3]
    >>> paths = nx.all_simple_paths(G, source=0, target=3, cutoff=2)
    >>> print(list(paths))
    [[0, 1, 3], [0, 2, 3], [0, 3]]

    Notes
    -----
    This algorithm uses a modified depth-first search to generate the
    paths [1]_.  A single path can be found in `O(V+E)` time but the
    number of simple paths in a graph can be very large, e.g. `O(n!)` in
    the complete graph of order n.

    References
    ----------
    .. [1] R. Sedgewick, "Algorithms in C, Part 5: Graph Algorithms",
       Addison Wesley Professional, 3rd ed., 2001.

    See Also
    --------
    all_shortest_paths, shortest_path
    """
    if source not in G:
        raise nx.NetworkXError('source node %s not in graph'%source)
    if target not in G:
        raise nx.NetworkXError('target node %s not in graph'%target)
    if cutoff is None:
        cutoff = len(G)-1
    if G.is_multigraph():
        return _all_simple_paths_multigraph(G, source, target, cutoff=cutoff)
    else:
        return _all_simple_paths_graph(G, source, target, cutoff=cutoff)

def _all_simple_paths_graph(G, source, target, cutoff=None):
    if cutoff < 1:
        return
    visited = [source]
    stack = [iter(G[source])]
    while stack:
        children = stack[-1]
        child = next(children, None)
        if child is None:
            stack.pop()
            visited.pop()
        elif len(visited) < cutoff:
            if child == target:
                yield visited + [target]
            elif child not in visited:
                visited.append(child)
                stack.append(iter(G[child]))
        else: #len(visited) == cutoff:
            if child == target or target in children:
                yield visited + [target]
            stack.pop()
            visited.pop()


def _all_simple_paths_multigraph(G, source, target, cutoff=None):
    if cutoff < 1:
        return
    visited = [source]
    stack = [(v for u,v in G.edges(source))]
    while stack:
        children = stack[-1]
        child = next(children, None)
        if child is None:
            stack.pop()
            visited.pop()
        elif len(visited) < cutoff:
            if child == target:
                yield visited + [target]
            elif child not in visited:
                visited.append(child)
                stack.append((v for u,v in G.edges(child)))
        else: #len(visited) == cutoff:
            count = ([child]+list(children)).count(target)
            for i in range(count):
                yield visited + [target]
            stack.pop()
            visited.pop()