| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 
 | """
Min-heaps.
"""
__author__ = """ysitu <ysitu@users.noreply.github.com>"""
# Copyright (C) 2014 ysitu <ysitu@users.noreply.github.com>
# All rights reserved.
# BSD license.
from heapq import heappop, heappush
from itertools import count
import networkx as nx
__all__ = ['MinHeap', 'PairingHeap', 'BinaryHeap']
class MinHeap(object):
    """Base class for min-heaps.
    A MinHeap stores a collection of key-value pairs ordered by their values.
    It supports querying the minimum pair, inserting a new pair, decreasing the
    value in an existing pair and deleting the minimum pair.
    """
    class _Item(object):
        """Used by subclassess to represent a key-value pair.
        """
        __slots__ = ('key', 'value')
        def __init__(self, key, value):
            self.key = key
            self.value = value
        def __repr__(self):
            return repr((self.key, self.value))
    def __init__(self):
        """Initialize a new min-heap.
        """
        self._dict = {}
    def min(self):
        """Query the minimum key-value pair.
        Returns
        -------
        key, value : tuple
            The key-value pair with the minimum value in the heap.
        Raises
        ------
        NetworkXError
            If the heap is empty.
        """
        raise NotImplementedError
    def pop(self):
        """Delete the minimum pair in the heap.
        Returns
        -------
        key, value : tuple
            The key-value pair with the minimum value in the heap.
        Raises
        ------
        NetworkXError
            If the heap is empty.
        """
        raise NotImplementedError
    def get(self, key, default=None):
        """Return the value associated with a key.
        Parameters
        ----------
        key : hashable object
            The key to be looked up.
        default : object
            Default value to return if the key is not present in the heap.
            Default value: None.
        Returns
        -------
        value : object.
            The value associated with the key.
        """
        raise NotImplementedError
    def insert(self, key, value, allow_increase=False):
        """Insert a new key-value pair or modify the value in an existing
        pair.
        Parameters
        ----------
        key : hashable object
            The key.
        value : object comparable with existing values.
            The value.
        allow_increase : bool
            Whether the value is allowed to increase. If False, attempts to
            increase an existing value have no effect. Default value: False.
        Returns
        -------
        decreased : bool
            True if a pair is inserted or the existing value is decreased.
        """
        raise NotImplementedError
    def __nonzero__(self):
        """Return whether the heap if empty.
        """
        return bool(self._dict)
    def __bool__(self):
        """Return whether the heap if empty.
        """
        return bool(self._dict)
    def __len__(self):
        """Return the number of key-value pairs in the heap.
        """
        return len(self._dict)
    def __contains__(self, key):
        """Return whether a key exists in the heap.
        Parameters
        ----------
        key : any hashable object.
            The key to be looked up.
        """
        return key in self._dict
def _inherit_doc(cls):
    """Decorator for inheriting docstrings from base classes.
    """
    def func(fn):
        fn.__doc__ = cls.__dict__[fn.__name__].__doc__
        return fn
    return func
class PairingHeap(MinHeap):
    """A pairing heap.
    """
    class _Node(MinHeap._Item):
        """A node in a pairing heap.
        A tree in a pairing heap is stored using the left-child, right-sibling
        representation.
        """
        __slots__ = ('left', 'next', 'prev', 'parent')
        def __init__(self, key, value):
            super(PairingHeap._Node, self).__init__(key, value)
            # The leftmost child.
            self.left = None
            # The next sibling.
            self.next = None
            # The previous sibling.
            self.prev = None
            # The parent.
            self.parent = None
    def __init__(self):
        """Initialize a pairing heap.
        """
        super(PairingHeap, self).__init__()
        self._root = None
    @_inherit_doc(MinHeap)
    def min(self):
        if self._root is None:
            raise nx.NetworkXError('heap is empty.')
        return (self._root.key, self._root.value)
    @_inherit_doc(MinHeap)
    def pop(self):
        if self._root is None:
            raise nx.NetworkXError('heap is empty.')
        min_node = self._root
        self._root = self._merge_children(self._root)
        del self._dict[min_node.key]
        return (min_node.key, min_node.value)
    @_inherit_doc(MinHeap)
    def get(self, key, default=None):
        node = self._dict.get(key)
        return node.value if node is not None else default
    @_inherit_doc(MinHeap)
    def insert(self, key, value, allow_increase=False):
        node = self._dict.get(key)
        root = self._root
        if node is not None:
            if value < node.value:
                node.value = value
                if node is not root and value < node.parent.value:
                    self._cut(node)
                    self._root = self._link(root, node)
                return True
            elif allow_increase and value > node.value:
                node.value = value
                child = self._merge_children(node)
                # Nonstandard step: Link the merged subtree with the root. See
                # below for the standard step.
                if child is not None:
                    self._root = self._link(self._root, child)
                # Standard step: Perform a decrease followed by a pop as if the
                # value were the smallest in the heap. Then insert the new
                # value into the heap.
                # if node is not root:
                #     self._cut(node)
                #     if child is not None:
                #         root = self._link(root, child)
                #     self._root = self._link(root, node)
                # else:
                #     self._root = (self._link(node, child)
                #                   if child is not None else node)
            return False
        else:
            # Insert a new key.
            node = self._Node(key, value)
            self._dict[key] = node
            self._root = self._link(root, node) if root is not None else node
            return True
    def _link(self, root, other):
        """Link two nodes, making the one with the smaller value the parent of
        the other.
        """
        if other.value < root.value:
            root, other = other, root
        next = root.left
        other.next = next
        if next is not None:
            next.prev = other
        other.prev = None
        root.left = other
        other.parent = root
        return root
    def _merge_children(self, root):
        """Merge the subtrees of the root using the standard two-pass method.
        The resulting subtree is detached from the root.
        """
        node = root.left
        root.left = None
        if node is not None:
            link = self._link
            # Pass 1: Merge pairs of consecutive subtrees from left to right.
            # At the end of the pass, only the prev pointers of the resulting
            # subtrees have meaningful values. The other pointers will be fixed
            # in pass 2.
            prev = None
            while True:
                next = node.next
                if next is None:
                    node.prev = prev
                    break
                next_next = next.next
                node = link(node, next)
                node.prev = prev
                prev = node
                if next_next is None:
                    break
                node = next_next
            # Pass 2: Successively merge the subtrees produced by pass 1 from
            # right to left with the rightmost one.
            prev = node.prev
            while prev is not None:
                prev_prev = prev.prev
                node = link(prev, node)
                prev = prev_prev
            # Now node can become the new root. Its has no parent nor siblings.
            node.prev = None
            node.next = None
            node.parent = None
        return node
    def _cut(self, node):
        """Cut a node from its parent.
        """
        prev = node.prev
        next = node.next
        if prev is not None:
            prev.next = next
        else:
            node.parent.left = next
        node.prev = None
        if next is not None:
            next.prev = prev
            node.next = None
        node.parent = None
class BinaryHeap(MinHeap):
    """A binary heap.
    """
    def __init__(self):
        """Initialize a binary heap.
        """
        super(BinaryHeap, self).__init__()
        self._heap = []
        self._count = count()
    @_inherit_doc(MinHeap)
    def min(self):
        dict = self._dict
        if not dict:
            raise nx.NetworkXError('heap is empty')
        heap = self._heap
        pop = heappop
        # Repeatedly remove stale key-value pairs until a up-to-date one is
        # met.
        while True:
            value, _, key = heap[0]
            if key in dict and value == dict[key]:
                break
            pop(heap)
        return (key, value)
    @_inherit_doc(MinHeap)
    def pop(self):
        dict = self._dict
        if not dict:
            raise nx.NetworkXError('heap is empty')
        heap = self._heap
        pop = heappop
        # Repeatedly remove stale key-value pairs until a up-to-date one is
        # met.
        while True:
            value, _, key = heap[0]
            pop(heap)
            if key in dict and value == dict[key]:
                break
        del dict[key]
        return (key, value)
    @_inherit_doc(MinHeap)
    def get(self, key, default=None):
        return self._dict.get(key, default)
    @_inherit_doc(MinHeap)
    def insert(self, key, value, allow_increase=False):
        dict = self._dict
        if key in dict:
            old_value = dict[key]
            if value < old_value or (allow_increase and value > old_value):
                # Since there is no way to efficiently obtain the location of a
                # key-value pair in the heap, insert a new pair even if ones
                # with the same key may already be present. Deem the old ones
                # as stale and skip them when the minimum pair is queried.
                dict[key] = value
                heappush(self._heap, (value, next(self._count), key))
                return value < old_value
            return False
        else:
            dict[key] = value
            heappush(self._heap, (value, next(self._count), key))
            return True
 |