1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
|
Announcement: NetworkX 2.0
==========================
We're happy to announce the release of NetworkX 2.0!
NetworkX is a Python package for the creation, manipulation, and study of the
structure, dynamics, and functions of complex networks.
For more information, please visit our `website <http://networkx.github.io/>`_
and our `gallery of examples
<https://networkx.github.io/documentation/latest/auto_examples/index.html>`_.
Please send comments and questions to the `networkx-discuss mailing list
<http://groups.google.com/group/networkx-discuss>`_.
Highlights
----------
This release is the result of over two years of work with 1212 commits and
193 merges by 86 contributors. Highlights include:
- We have made major changes to the methods in the Multi/Di/Graph classes.
There is a `migration guide for people moving from 1.X to 2.0
<https://networkx.github.io/documentation/latest/release/migration_guide_from_1.x_to_2.0.html>`_.
- We updated the documentation system.
API Changes
-----------
* Base Graph Class Changes
With the release of NetworkX 2.0 we are moving towards a view/iterator reporting API.
We used to have two methods for the same property of the graph, one that returns a
list and one that returns an iterator. With 2.0 we have replaced them with a view.
A view is a read-only object that is quick to create, automatically updated, and
provides basic access like iteration, membership and set operations where appropriate.
For example, ``G.nodes()`` used to return a list and ``G.nodes_iter()`` an iterator.
Now ``G.nodes()`` returns a view and ``G.nodes_iter()`` is removed. ``G.degree()``
returns a view with ``(node, degree)`` iteration, so that ``dict(G.degree())``
returns a dict keyed by node with degree as value.
The old behavior
>>> G = nx.complete_graph(5)
>>> G.nodes() # doctest: +SKIP
[0, 1, 2, 3, 4]
>>> G.nodes_iter() # doctest: +SKIP
<dictionary-keyiterator at ...>
has changed to
>>> G = nx.complete_graph(5)
>>> G.nodes()
NodeView((0, 1, 2, 3, 4))
>>> list(G.nodes())
[0, 1, 2, 3, 4]
New feature include lookup of node and edge data from the views, property
access without parentheses, and set operations.
>>> G.add_node(3, color='blue')
>>> G.nodes[3]
{'color': 'blue'}
>>> G.nodes & {3, 4, 5}
set([3, 4])
The following methods have changed:
* Graph/MultiGraph
* ``G.nodes()``
* ``G.edges()``
* ``G.neighbors()``
* ``G.adjacency_list()`` and ``G.adjacency_iter()`` to ``G.adjacency()``
* ``G.degree()``
* ``G.subgraph()``
* ``G.copy()``
* ``G.__class__()`` should be replaced with ``G.fresh_copy()``
* DiGraph/MultiDiGraph
* ``G.nodes()``
* ``G.edges()``
* ``G.in_edges()``
* ``G.out_edges()``
* ``G.degree()``
* ``G.in_degree()``
* ``G.out_degree()``
* ``G.reverse()``
The following deprecated methods will be removed in a future release (3.0?).
* ``G.node``, ``G.edge`` (replaced by G.nodes, G.edges)
* ``G.add_path``, ``G.add_cycle``, ``G.add_star`` (Now ``nx.add_path(G,...``)
* ``G.selfloop_edges``, ``G.nodes_with_selfloops``, ``G.number_of_selfloops``
(Now ``nx.selfloop_edges(G)``, etc)
Many subclasses have been changed accordingly such as:
* AntiGraph
* OrderedGraph and friends
* Examples such as ThinGraph that inherit from Graph
* [`#2107 <https://github.com/networkx/networkx/pull/2107>`_]
The Graph class methods ``add_edge`` and ``add_edges_from`` no longer
allow the use of the ``attr_dict`` parameter. Instead use keyword arguments.
Thus ``G.add_edge(1, 2, {'color': 'red'})`` becomes
``G.add_edge(1, 2, color='red')``.
Note that this only works if the attribute name is a string. For non-string
attributes you will need to add the edge and then update manually using
e.g. ``G.edges[1, 2].update({0: "zero"})``
* [`#1577 <https://github.com/networkx/networkx/pull/1577>`_]
In addition to minimum spanning trees, a new function for calculating maximum
spanning trees is now provided. The new API consists of four functions:
``minimum_spanning_edges``, ``maximum_spanning_edges``,
``minimum_spanning_tree``, and ``maximum_spanning_tree``.
All of these functions accept an ``algorithm`` parameter which specifies the
algorithm to use when finding the minimum or maximum spanning tree. Currently,
Kruskal's and Prim's algorithms are implemented, defined as 'kruskal' and
'prim', respectively. If nothing is specified, Kruskal's algorithm is used.
For example, to calculate the maximum spanning tree of a graph using Kruskal's
algorithm, the function ``maximum_spanning_tree`` has to be called like::
>>> nx.maximum_spanning_tree(G, algorithm='kruskal')
The ``algorithm`` parameter is new and appears before the existing ``weight``
parameter. So existing code that did not explicitly name the optional
``weight`` parameter will need to be updated::
>>> nx.minimum_spanning_tree(G, 'mass') # old
>>> nx.minimum_spanning_tree(G, weight='mass') # new
In the above, we are still relying on the the functions being imported into the
top-level namespace. We do not have immediate plans to deprecate this approach,
but we recommend the following instead::
>>> from networkx.algorithms import tree
# recommended
>>> tree.minimum_spanning_tree(G, algorithm='kruskal', weight='mass')
>>> tree.minimum_spanning_edges(G, algorithm='prim', weight='mass')
* [`#1445 <https://github.com/networkx/networkx/pull/1445>`_]
Most of the ``shortest_path`` algorithms now raise a ``NodeNotFound`` exception
when a source or a target are not present in the graph.
* [`#2326 <https://github.com/networkx/networkx/pull/2326>`_]
Centrality algorithms were harmonized with respect to the default behavior of
the weight parameter. The default value of the ``weight`` keyword argument has
been changed from ``weight`` to ``None``. This affects the
following centrality functions:
- :func:`approximate_current_flow_betweenness_centrality()`
- :func:`current_flow_betweenness_centrality()`
- :func:`current_flow_betweenness_centrality_subset()`
- :func:`current_flow_closeness_centrality()`
- :func:`edge_current_flow_betweenness_centrality()`
- :func:`edge_current_flow_betweenness_centrality_subset()`
- :func:`eigenvector_centrality()`
- :func:`eigenvector_centrality_numpy()`
- :func:`katz_centrality()`
- :func:`katz_centrality_numpy()`
* [`#2420 <https://github.com/networkx/networkx/pull/2420>`_]
New community detection algorithm provided. Fluid Communities is an
asynchronous algorithm based on the simple idea of fluids interacting in an
environment, expanding and pushing each other. The algorithm is completely
described in `"Fluid Communities: A Competitive and Highly Scalable Community
Detection Algorithm" <https://arxiv.org/pdf/1703.09307.pdf>`_.
* [`#2510 <https://github.com/networkx/networkx/pull/2510>`_ and
`#2508 <https://github.com/networkx/networkx/pull/2508>`_]
``single_source_dijkstra``, ``multi_source_dijkstra`` and functions that use
these now have new behavior when ``target`` is specified. Instead of
returning dicts for distances and paths a 2-tuple of ``(distance, path)`` is
returned. When ``target`` is not specified the return value is still 2
dicts.
* [`#2553 <https://github.com/networkx/networkx/pull/2553>`_]
``set_node_attributes()`` and ``set_edge_attributes()`` now accept
dict-of-dict input of shape ``{node/edge: {name: value}}`` in addition to
previous valid inputs: ``{node/edge: value}`` and ``value``. The order of the
parameters changed also: The second parameter "values" is the value argument
and the third parameter "name" is the name of the attribute. "name" has
default value ``None`` in which case "values" must be the newly allowed form
containing names. Previously "name" came second without default, and "values"
came third.
* [`#2604 <https://github.com/networkx/networkx/pull/2604>`_] Move selfloop
methods out of base classes to networkx functions.
``G.number_of_selfloops()``, ``G.selfloop_edges()``,
``G.nodes_with_selfloops()`` are now ``nx.number_of_selfloops(G)``,
``nx.selfloop_edges(G)``, ``nx.nodes_with_selfloops(G)``.
``G.node`` and ``G.edge`` are removed. Their functionality are replaced by
``G.nodes`` and ``G.edges``.
* [`#2558 <https://github.com/networkx/networkx/pull/2558>`_]
Previously, the function ``from_pandas_dataframe`` assumed that the dataframe
has edge-list like structures, but ``to_pandas_dataframe`` generates an
adjacency matrix. We now provide four functions ``from_pandas_edgelist``,
``to_pandas_edgelist``, ``from_pandas_adjacency``, and ``to_pandas_adjacency``.
* [`#2620 <https://github.com/networkx/networkx/pull/2620>`_]
Removed ``draw_nx``, please use ``draw`` or ``draw_networkx``.
* [`#1662 <https://github.com/networkx/networkx/pull/1662>`_]
Rewrote ``topolgical_sort`` as a generator. It no longer accepts
``reverse`` or ``nbunch`` arguments and is slightly faster.
Added ``lexicographical_topological_sort``, which accepts a key.
Deprecations
------------
The following deprecated functions will be removed in 2.1.
- The function ``bellman_ford`` has been deprecated in favor of
``bellman_ford_predecessor_and_distance``.
- The functions ``to_pandas_dataframe`` and ``from_pandas_dataframe`` have been
deprecated in favor of ``to_pandas_adjacency``, ``from_pandas_adjacency``,
``to_pandas_edgelist``, and ``from_pandas_edgelist``.
Contributors to this release
----------------------------
- Niels van Adrichem
- Kevin Arvai
- Ali Baharev
- Moritz Emanuel Beber
- Livio Bioglio
- Jake Bogerd
- Moreno Bonaventura
- Raphaël Bournhonesque
- Matthew Brett
- James Clough
- Marco Cognetta
- Jamie Cox
- Jon Crall
- Robert Davidson
- Nikhil Desai
- DonQuixoteDeLaMancha
- Dosenpfand
- Allen Downey
- Enrico
- Jens Erat
- Jeffrey Finkelstein
- Minas Gjoka
- Aravind Gollakota
- Thomas Grainger
- Aric Hagberg
- Harry
- Yawara ISHIDA
- Bilal AL JAMMAL
- Ryan James
- Omer Katz
- Janis Klaise
- Valentin Lorentz
- Alessandro Luongo
- Francois Malassenet
- Arya McCarthy
- Michael-E-Rose
- Peleg Michaeli
- Jarrod Millman
- Chris Morin
- Sanggyu Nam
- Nishant Nikhil
- Rhile Nova
- Ramil Nugmanov
- Juan Nunez-Iglesias
- Pim Otte
- Ferran Parés
- Richard Penney
- Phobia
- Tristan Poupard
- Sebastian Pucilowski
- Alexander Rodriguez
- Michael E. Rose
- Alex Ryan
- Zachary Sailer
- René Saitenmacher
- Felipe Schneider
- Dan Schult
- Scinawa
- Michael Seifert
- Mohammad Hossein Sekhavat
- Mridul Seth
- SkyTodInfi
- Stacey Smolash
- Jordi Torrents
- Martin Törnwall
- Jannis Vamvas
- Luca Verginer
- Prayag Verma
- Peter Wills
- Ianto Lin Xi
- Heqing Ya
- aryamccarthy
- chebee7i
- definitelyuncertain
- jfinkels
- juliensiebert
- leotrs
- leycec
- mcognetta
- numpde
- root
- salotz
- scott-vsi
- thegreathippo
- vpodpecan
- yash14123
- Neil Girdhar
Pull requests merged in this release
------------------------------------
- Gml read fix. (#1962)
- Small changes leftover from #1847 (#1966)
- Fix k_core for directed graphs. Add tests (#1963)
- Communicability fix (#1958)
- Allows weight functions in shortest path functions (#1690)
- minor doc changes on weighted.py (#1969)
- Fix minimum_st_edge_cut documentation. (#1977)
- Fix all_node_cuts corner cases: cycle and complete graphs. (#1976)
- Change add_path/star/cycle from methods to functions (#1970)
- branch 'edge-subgraph' from @jfinkels (#1740)
- Corrected eppstein matching (#1955)
- Nose ignore docstrings (#1980)
- Edited Doc Makefile so clean doesn't delete the examples folder (#1967)
- bug fix in convert_matrix.py (#1983)
- Avoid unnecessary eigenval sort in pagerank_numpy (#1986)
- Fix a typo in install.rst (#1991)
- Adds unorderable nodes test for dag_longest_path. (#1999)
- Improve drawing test scripts (typos, newlines, methods) (#1992)
- Improves test coverage for A* shortest path. (#1988)
- Improves test coverage for avg degree connectivity (#1987)
- Fix Graph() docstring to reflect input flexibility (#2006)
- Fix sphinx autosummary doc generation errors. (#2026)
- Improve gexf.py (#2010)
- Readme.rst should mention Decorator package is required. (#2009)
- fix_duplicate_kwarg: Fix a duplicate kwarg that was causing to_agraph… (#2005)
- Cleans documentation for graph6 and sparse6 I/O. (#2002)
- Remove http server example (#2001)
- Generalize and improve docstrings of node_link.py (#2000)
- fix issue #1948 and PEP8 formatting (#2031)
- Uses weight function for dijkstra_path_length. (#2033)
- Change default role for sphinx to 'obj' (#2027)
- fixed typo s/abritrary/arbitrary/ (#2035)
- Fix bug in dtype-valued matrices (#2038)
- Adds example for using Graph.nodes() with default (#2040)
- Clarifies some examples for relabel_nodes(). (#2041)
- Cleans code and documentation for graph power. (#2042)
- Cleans the classes.function module. (#2043)
- UnboundLocalError if called with an empty graph (#2047)
- Standardized Bellman-Ford function calls (#1910)
- Nobody is in IRC (#2059)
- Uses add_weighted_edges_from function in MST test. (#2061)
- Adds multi-source Dijkstra's algorithm (#2073)
- Adds Voronoi cells algorithm (#2074)
- Fixes several issues with the Girvan-Newman partitioning function. Fixes #1703, #1725, #1799 (#1972)
- Moves is_path from utils to simple_paths. (#1921)
- add max_iter and tol parameter for numpy version (#2013)
- Remove draw_graphviz function. Fixes #1997 (#2077)
- Fixes #1998 edge_load function needs documentation. (#2075)
- Update fixcoverage.py (#2080)
- Support digraphs in approximate min vertex cover (#2039)
- Simplifies code in functions for greedy coloring. (#1680)
- Allows arbitrary metric in geometric generators. (#1679)
- Fix spring_layout for single node graph. (#2081)
- Updates set_{node,edge}_attributes and docs. (#1935)
- Fixes tests for maximal matching. (#1919)
- Adds LFM benchmark graph generator for communities (#1727)
- Adds global and local efficiency functions. (#1521)
- Apply alphas to individual nodes (#1289)
- Code and tests for temporal VF2 (#1653)
- extend convert_bool in gexf.py and graphml.py to all valid boolean (#1063)
- Remove encoded ... to plain ascii (#2086)
- Use not_implemented_for() for in_degree_centrality() and out_degree_centrality() (#2084)
- Issue 2072 weighted modularity (#2088)
- Simplifies eigenvector centrality implementation. (#1708)
- Fjmalass nodes as tuples (#2089)
- Generator rename (#2090)
- Ensure links in doc ```See also``` sections (#2082)
- Document integer-only numeric mixing (#2085)
- doc sphinx error removal (#2091)
- Correct see also links (#2095)
- Adjust layout.py function signatures, docs, exposure (#2096)
- Adds missing __all__ attributes. (#2098)
- Fixes 2 bugs in dominance frontier code (#2092)
- Created two new files: joint_degree_seq.py and test_joint_degree_seq.… (#2011)
- Adds Borůvka's minimum spanning tree algorithm. (#1873)
- Adds global/local reaching centrality functions. (#2099)
- Remove conflicts from #1894 (Update Exception Classes) (#2100)
- Add Exceptions for missing source in shortest_path (#2102)
- Docs for compose now warn about MultiGraph edgekeys (#2101)
- Improve Notes section on simplex and friends docs. (#2104)
- Add Dinitz' algorithm for maximum flow problems. (#1978)
- Removed duplicated method/doc (add_edges_from) (#1)
- Bugfix for generic_multiedge_match (Issue #2114) (#2124)
- Fix for 2015. (#2)
- add_node, add_edge attr_dict change. (#2132)
- Handle graph name attribute in relabel_nodes (#2136)
- Fix fruchterman reingold bug and add more tests to layouts. (#2141)
- Adds exception: failed power iteration convergence (#2143)
- Tweak iteration logic of HITS (#2142)
- Fix PageRank personalize docstring (#2148)
- Set default source=None for dfs_tree (#2149)
- Fix docs for maximal_matching and tensor_product (#2158)
- Isolate edge key generation in multigraphs (#2150)
- Sort centralities together and outsource dispersion (#2083)
- Changed classic generators to use generators instead of lists (#2167)
- Adds beam search traversal algorithm with example (#2129)
- Turan graph (#2172)
- Removes irrelevant Notes section from docstring (#2178)
- Corrects logarithm base in example (#2179)
- Minor correction in documentation (#2180)
- Add Boykov Kolmogorov algorithm for maximum flow problems. (#2122)
- Remove temporary files after tests are run. (#2202)
- Add support for subgraphs with no edges in convert_matrix.to_scipy_sparse_matrix. (#2199)
- Add support for reading adjacency matrix in readwrite.pajek.parse_pajek. (#2200)
- Moves Graph Atlas to data file. (#2064)
- Refactor Dinitz' algorithm implementation. (#2196)
- Use arrays instead of matrices in scipy.linalg.expm() (#2208)
- Making in_edges equivalent to out_edges (#2206)
- Fix tests failing because of ordering issues. (#2207)
- Fix code escaping. (#2214)
- Add adjlist_outer_dict_factory. (#2222)
- Typo in scale free network generator documentation (#2225)
- Add link to nx.drawing.layout instead of mentionning nx.layout. (#2224)
- Example not working in tutorial (#2230)
- don't assume nodes are sortable when running dag_longest_path (#2228)
- Correct typo (#2236)
- Use ego graph when computing local efficiency (#2246)
- Make harmonic centrality more memory-efficient (#2247)
- have dag_longest_path_length return path length, not edge count (#2237)
- Added transitive_reduction in dag (#2215)
- alpha kwarg not used in pylab label drawing, added it here. (#2269)
- Make PyDot Support Great Again (#2272)
- Unnecessary array copying in katz_centrality_numpy ? (#2287)
- Switch to faster smallest-last algorithm implementation. (#2268)
- Adds example for getting all simple edge paths. Fixes #718 (#2260)
- Remove obsolete testing tools. (#2303)
- Correct error in minimum_spanning_arborescence (#2285)
- Yield string, not dict, in dfs_labeled_edges. (#2277)
- Removes unnecessary convert_to_(un)directed func (#2259)
- Complete multipartite graph docs (#2221)
- fix LPA bug, see issues/2219 (#2227)
- Generalized degree (#2220)
- Turan docs (#2218)
- Fix broken link to the description of the P2G format. (#2211)
- Test ordering (#2209)
- add example of node weights (#2250)
- added paramether nbunch (#2253)
- Adds unit tests for using dtype with to_numpy_matrix (#2257)
- Adds chain decomposition algorithm. (#2284)
- add the Hoffman-Singleton graph (#2275)
- Allow grid_graph generator to accept tuple dim argument (#2320)
- psuedo -> pseudo (fixing typo) (#2322)
- Corrects navigable small world graph param docs (#2321)
- Fix bug in find_cycle. (#2324)
- flip source target (#2309)
- Simpler version of digitsrep(..) function (#2330)
- change articulation_points so that it only returns every vertex once (#2333)
- Use faster random geometric graph implementation. (#2337)
- Allow community asyn_lpa test to have two answers (#2339)
- Fix broken links and remove pdf files from Makefile (#2344)
- Documents orderable node requirement for isom. (#2302)
- Adds modularity measure for communities. (#1729)
- Simplifies degree sequence graph generators. (#1866)
- Adds tree encoding and decoding functions. (#1874)
- Corrects number_of_edges docs for directed graphs (#2360)
- Adds multigraph keys to Eulerian circuits (#2359)
- Update predecessors/successors in edge subgraph (#2373)
- Fix for #2364 (#2372)
- Raise an Exception for disconnected Graphs in bipartite.sets (#2375)
- fixes typo in NetworkXNotImplemented (#2385)
- Check alternating paths using iterative DFS in to_vertex_cover. (#2386)
- Fix typos in generating NXError in networkx.linalg.graphmatrix.incidence_matrix (#2395)
- [Fixes #2342] remove calls to plt.hold(), deprecated in mpl2.0 (#2397)
- Fix broken links (#2414)
- Fix all tests for 3.6 (#2413)
- Improve bipartite documentation. (#2402)
- correct logic in GEXFWriter (#2399)
- list optional dependencies in setup.py (#2398)
- Gitwash update (#2371)
- Added cytoscape JSON handling (#2351)
- Fix for issues #2328 and #2332 (#2366)
- Workaround for gdal python3.6 at travis and more doctests fixes (#2416)
- Fixed bug on custom attrs usage: unavailable iteritems method for dict. (#2461)
- Fix sphinx errors and class outlines (#2480)
- Note the precondition that graphs are directed and acyclic (#2500)
- Add CONTRIBUTE file (#2501)
- Remove external module (#2521)
- Ensure `make html` doesn't fail build on exit (#2530)
- Cherry pick missing commits (#2535)
- Document release process (#2539)
- Update copyright (#2551)
- Remove deprecated code (#2536)
- Improve docs (#2555)
- WIP: Add note on how to estimate appropriate values for alpha (#2583)
- Travis refactor (#2596)
- Create separate functions for df as edge-lists and adjacency matrices (#2558)
- Use texext for math_dollar (#2609)
- Add drawing tests (#2617)
- Add threshold tests (#2622)
- Update docs (#2623)
- Prep beta release (#2624)
- Refactor travis tests and deploy docs with travis (#2647)
- matplotlib 2.1 deprecated is_string_like (#2659)
- topolgical_sort, lexicographical_topological_sort (#1662)
|