File: test_data.py

package info (click to toggle)
python-nexusformat 1.0.6-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 516 kB
  • sloc: python: 5,791; makefile: 5; sh: 1
file content (460 lines) | stat: -rw-r--r-- 12,927 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import os
import warnings

import numpy as np
import pytest
from nexusformat.nexus.tree import (NXdata, NXentry, NXfield, NXroot,
                                    NXsubentry, NXvirtualfield, nxconsolidate,
                                    nxload)


@pytest.fixture
def data(x, y, z, v):
    """
    Returns a simple NXdata object with a title.
    """
    return NXdata(v, (z, y, x), title="Title")


@pytest.fixture
def data2(v):
    """
    Returns a different, simple NXdata object with a title.
    """
    v2 = v[0]
    v2.resize((1, 5, 10))
    return NXdata(v2)


@pytest.fixture
def empty_data():
    """
    Returns a default NXdata instance.
    """
    return NXdata()


@pytest.fixture
def NXdata_from_empty_01(empty_data, x, y, z, v):
    empty_data.nxsignal = v
    empty_data.nxaxes = (z, y, x)
    return empty_data


@pytest.fixture
def NXdata_from_empty_02(empty_data, x, y, z, v):
    empty_data["v"] = v
    empty_data["x"] = x
    empty_data["y"] = y
    empty_data["z"] = z
    empty_data.nxsignal = "v"
    empty_data.nxaxes = ("z", "y", "x")
    return empty_data


def test_data_creation(data):

    assert "signal" in data.attrs
    assert "axes" in data.attrs
    assert len(data.attrs["axes"]) == 3
    assert data.ndim == 3
    assert data.shape == (2, 5, 10)
    assert data.nxsignal.nxname == "v"
    assert data.nxsignal.ndim == 3
    assert data.nxsignal.shape == (2, 5, 10)
    assert data.nxsignal.any()
    assert not data.nxsignal.all()
    assert [axis.nxname for axis in data.nxaxes] == ["z", "y", "x"]
    assert [axis.ndim for axis in data.nxaxes] == [1, 1, 1]
    assert [axis.shape for axis in data.nxaxes] == [(3,), (6,), (11,)]

    assert data.nxtitle == "Title"


def test_default_data(data):

    root = NXroot(NXentry(data))
    root["entry/data"].set_default()

    assert root.get_default() is root["entry/data"]
    assert root["entry"].get_default() is root["entry/data"]
    assert root["entry/data"].get_default() is root["entry/data"]
    assert root.plottable_data is root["entry/data"]

    root["entry/subentry"] = NXsubentry(data)
    root["entry/subentry/data"].set_default()

    assert root.get_default() is root["entry/data"]
    assert root["entry/subentry"].get_default() is root["entry/subentry/data"]
    assert root["entry/subentry"].plottable_data is root["entry/subentry/data"]

    root["entry/subentry/data"].set_default(over=True)

    assert root.get_default() is root["entry/subentry/data"]
    assert root["entry"].get_default() is root["entry/subentry/data"]
    assert root["entry/data"].get_default() is root["entry/data"]
    assert root.plottable_data is root["entry/subentry/data"]


def test_plottable_data_01(data):

    assert data.is_plottable()
    assert data.plottable_data is data
    assert data.plot_rank == 3
    assert data.plot_rank == data.nxsignal.ndim
    assert data.plot_axes == data.nxaxes
    assert data.nxsignal.valid_axes(data.nxaxes)


def test_plottable_data_02(data2):

    assert data2.shape == (1, 5, 10)
    assert data2.plot_shape == (5, 10)
    assert data2.plot_rank == 2
    assert data2.plot_rank == data2.nxsignal.ndim - 1


@pytest.mark.parametrize(
    "data_fixture_name",
    ['NXdata_from_empty_01',
     'NXdata_from_empty_02']
)
def test_signal_selection(data_fixture_name, z, v, request):

    data = request.getfixturevalue(data_fixture_name)
    assert data.nxsignal.nxname == "v"
    assert [axis.nxname for axis in data.nxaxes] == ["z", "y", "x"]
    assert np.array_equal(data.nxsignal, v)
    assert np.array_equal(data.nxaxes[0], z)


def test_rename(NXdata_from_empty_01):

    data = NXdata_from_empty_01
    data["x"].rename("xx")
    data["y"].rename("yy")
    data["z"].rename("zz")
    data["v"].rename("vv")
    assert data.nxsignal.nxname == "vv"
    assert [axis.nxname for axis in data.nxaxes] == ["zz", "yy", "xx"]


def test_size_one_axis(x, z):

    y1 = np.array((1), dtype=np.float64)
    v1 = NXfield(np.linspace(0, 10*1*2, num=10*1*2, dtype=np.int64), name="v")
    v1.resize((2, 1, 10))

    data = NXdata(v1, (z, y1, x))

    assert data.is_plottable()
    assert data.plottable_data is data
    assert data.plot_rank == 2
    assert data.plot_rank == data.nxsignal.ndim - 1
    assert len(data.plot_axes) == 2
    assert data.plot_shape == (2, 10)
    assert data.nxsignal.valid_axes(data.plot_axes)


def test_data_operations(data, v):

    new_data = data + 1

    assert np.array_equal(new_data.nxsignal.nxvalue, v + 1)
    assert new_data.nxaxes == data.nxaxes
    assert new_data.nxsignal.nxname == "v"
    assert [axis.nxname for axis in data.nxaxes] == ["z", "y", "x"]

    new_data = data - 1

    assert np.array_equal(new_data.nxsignal, v - 1)

    new_data = data * 2

    assert np.array_equal(new_data.nxsignal, v * 2)

    new_data = 2 * data

    assert np.array_equal(new_data.nxsignal, v * 2)

    new_data = data / 2

    assert np.array_equal(new_data.nxsignal, v / 2)

    new_data = 2 * data - data

    assert np.array_equal(new_data.nxsignal, v)


def test_data_errors():

    y1 = NXfield(np.linspace(1, 10, 10), name="y")
    v1 = NXfield(y1**2, name="v")
    e1 = NXfield(np.sqrt(v1))

    data = NXdata(v1, (y1), errors=e1)

    assert data.nxerrors is not None
    assert data.nxerrors.nxname == "v_errors"
    assert np.array_equal(data.nxerrors, e1)

    data = NXdata(v1, (y1))
    data.nxerrors = e1

    new_data = 2 * data

    assert np.array_equal(new_data.nxerrors, 2 * e1)

    new_data = 2 * data - data

    assert np.array_equal(new_data.nxerrors, e1 * np.sqrt(5))

    new_data = data - data / 2

    assert np.array_equal(new_data.nxerrors, e1 * np.sqrt(1.25))


def test_data_weights():

    y1 = NXfield(np.linspace(1, 10, 10), name="y")
    v1 = NXfield(y1**2, name="v")
    w1 = NXfield(np.sqrt(v1))

    data = NXdata(v1, (y1), errors=y1, weights=w1)

    assert data.nxweights is not None
    assert data.nxweights.nxname == "v_weights"
    assert np.array_equal(data.nxweights, w1)

    weighted_data = data.weighted_data()

    assert np.array_equal(weighted_data.nxsignal, v1 / w1)
    assert np.array_equal(weighted_data.nxerrors, y1 / w1)
    assert weighted_data.nxaxes == data.nxaxes

    data = NXdata(v1, (y1))
    data.nxweights = w1

    new_data = 2 * data

    assert np.array_equal(new_data.nxweights, 2 * w1)

    new_data = 2 * data - data

    assert np.array_equal(new_data.nxweights, w1)

    new_data = data - data / 2

    assert np.array_equal(new_data.nxweights, w1/2)


def test_data_angles(data):

    data.nxangles = [120, 90, 90]

    assert data.nxangles == [120.0, 90.0, 90.0]


def test_data_slabs(data, x, y, v):

    slab = data[0, :, :]

    assert np.array_equal(slab.nxsignal, v[0])
    assert slab.plot_rank == 2
    assert slab.plot_shape == v[0].shape
    assert slab.nxaxes == [y, x]

    slab = data[0, 3.:12., 2.:18.]

    assert slab.plot_shape == (v.shape[1]-2, v.shape[2]-2)
    assert slab.plot_axes == [y[1:-1], x[1:-1]]

    slab = data[0, 3.5:11.5, 2.5:17.5]

    assert slab.shape == (v.shape[1]-2, v.shape[2]-2)
    assert slab.plot_shape == (v.shape[1]-2, v.shape[2]-2)
    assert slab.plot_axes == [y[1:-1], x[1:-1]]

    slab1 = data[0:0, 3.5:11.5, 2.5:17.5]
    slab2 = data[0:1, 3.5:11.5, 2.5:17.5]

    assert slab1.shape == slab.shape
    assert slab2.shape == slab.shape


def test_data_projections(x, y, z, v):

    d1 = NXdata(v[0], (y, x))

    assert d1.nxaxes == [d1["y"], d1["x"]]

    p1 = d1.project((1, 0))
    p2 = d1.project((0, 1), limits=((3., 9.), (4., 16.)))

    assert p1.nxaxes == [p1["x"], p1["y"]]
    assert np.array_equal(p1["x"].nxvalue, d1["x"])
    assert p2.nxaxes == [p2["y"], p2["x"]]
    assert np.array_equal(p2["x"].nxvalue, d1["x"][4.:16.])
    assert np.array_equal(p2["x"].nxvalue, d1["x"][2:9])

    d2 = NXdata(v, (z, y, x))

    p3 = d2.project((0, 1), ((0., 8.), (3., 9.), (4., 16.)))

    assert p3.nxaxes == [p3["z"], p3["y"]]
    assert np.array_equal(p3["y"].nxvalue, d2["y"][3.:9.])
    assert np.array_equal(p3["y"].nxvalue, d2["y"][1:4])
    assert p3["x"] == 10.
    assert p3["x"].attrs["minimum"] == 4.
    assert p3["x"].attrs["maximum"] == 16.
    assert p3["x"].attrs["summed_bins"] == 7
    assert p3["v"].sum() == d2.v[:, 1:3, 2:8].sum()

    p4 = d2.project((0, 1), ((0., 8.), (3., 9.), (4., 16.)), summed=False)

    assert p4["v"].sum() == d2.v[:, 1:3, 2:8].sum() / \
        p4["x"].attrs["summed_bins"]


def test_data_transpose(data):

    signal = data.nxsignal
    assert data.transpose().shape == signal.shape[::-1]
    axes = [2, 0, 1]
    transposed_data = data.transpose(axes)
    assert transposed_data.shape == signal.transpose(axes).shape
    assert ([axis.nxname for axis in transposed_data.nxaxes] ==
            [data.nxaxes[i].nxname for i in axes])


def test_data_smoothing(x):

    warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
    data = NXdata(np.sin(x), (x))
    smooth_data = data.smooth(n=101, xmin=x.min(), xmax=x.max())

    assert smooth_data.nxsignal.shape == (101,)
    assert smooth_data.nxaxes[0].shape == (101,)
    assert smooth_data.nxsignal[0] == pytest.approx(np.sin(x)[0])
    assert smooth_data.nxsignal[-1] == pytest.approx(np.sin(x)[-1])

    smooth_data = data.smooth(factor=4)

    assert smooth_data.nxsignal.shape == (41,)
    assert smooth_data.nxaxes[0].shape == (41,)
    assert smooth_data.nxsignal[0] == pytest.approx(np.sin(x)[0])
    assert smooth_data.nxsignal[4] == pytest.approx(np.sin(x)[1])
    assert smooth_data.nxsignal[-1] == pytest.approx(np.sin(x)[-1])


def test_data_selection():

    xx = np.linspace(0, 20.0, 21, dtype=float)
    yy = np.ones(shape=xx.shape, dtype=float)
    yy[np.where(np.remainder(xx, 4) == 0.0)] = 2.0
    data = NXdata(yy, xx)

    selected_data = data.select(4.0)

    assert selected_data.shape == (6,)
    assert np.all(selected_data.nxsignal == 2.0)

    yy[(np.array((1, 3, 5, 7, 9, 11, 13, 15, 17, 19)),)] = 1.5
    data = NXdata(yy, xx)

    selected_data = data.select(4.0, offset=1.0)

    assert selected_data.shape == (5,)
    assert np.all(selected_data.nxsignal == 1.5)

    selected_data = data.select(4.0, offset=1.0, symmetric=True)

    assert selected_data.shape == (10,)
    assert np.all(selected_data.nxsignal == 1.5)


def test_data_moments(peak1D, arr1D):

    data = NXdata(peak1D, arr1D)

    assert data.sum() == data.nxsignal.nxvalue.sum()
    assert np.isclose(data.moment(1), 50.0, rtol=1e-3)
    assert np.isclose(data.moment(2), 100.0, rtol=1e-3)
    assert np.isclose(data.std(), 10.0, rtol=1e-3)
    assert np.isclose(data.average(), data.nxsignal.nxvalue.sum() / 101.0)


def test_image_data(x, y, z, v, im):

    root = NXroot(NXentry(NXdata(im)))
    root["entry"].attrs["default"] = "data"
    root["entry/other_data"] = NXdata(v, (z, y, x), title="Title")

    assert root["entry/data/image"].is_image()
    assert root["entry/data"].is_image()
    assert root.plottable_data.is_image()
    assert root["entry"].plottable_data.is_image()
    assert not root["entry/other_data"].is_image()


def test_smart_indices(x, v):

    ind = [1, 3, 5]

    assert all(x[ind].nxvalue == x.nxvalue[ind])
    assert all(v[v > 50].nxvalue == v.nxvalue[v.nxvalue > 50])
    assert all(v[1, 0, ind].nxvalue == v.nxvalue[1, 0, ind])

    x[ind] = 0

    assert x.any() and not x[ind].any()

    ind = np.array([[3, 7], [4, 5]])

    assert np.all(x[ind].nxvalue == x.nxvalue[ind])

    row = np.array([0, 1, 2])
    col = np.array([2, 1, 3])

    assert all(v[0][row, col].nxvalue == v[0].nxvalue[row, col])
    assert np.all(v[0][row[:, np.newaxis], col].nxvalue ==
                  v[0].nxvalue[row[:, np.newaxis], col])


@pytest.mark.parametrize("path", [True, False])
def test_virtual_fields(tmpdir, path, v):

    s1 = NXroot(NXentry(NXdata(v)))
    s2 = NXroot(NXentry(NXdata(2*v)))
    s3 = NXroot(NXentry(NXdata(3*v)))

    s1.save(os.path.join(tmpdir, "s1.nxs"), "w")
    s2.save(os.path.join(tmpdir, "s2.nxs"), "w")
    s3.save(os.path.join(tmpdir, "s3.nxs"), "w")

    sources = [f.nxfilename for f in [s1, s2, s3]]

    if path:
        vds1 = NXvirtualfield("entry/data/v", sources, shape=v.shape,
                              dtype=v.dtype)
    else:
        vds1 = NXvirtualfield(s1["entry/data/v"], sources)

    assert vds1.shape == (3,) + v.shape
    assert vds1.dtype == v.dtype
    assert vds1.sum() == 6 * v.sum()

    vds2 = nxconsolidate(sources, "entry/data")

    assert vds2.nxsignal.shape == vds1.shape
    assert vds2.nxsignal.dtype == v.dtype
    assert vds2.sum() == 6 * v.sum()

    NXroot(NXentry(vds2)).save(os.path.join(tmpdir, "vds.nxs"), "w")
    vds3 = nxload(os.path.join(tmpdir, "vds.nxs"))

    assert "entry/data/v" in vds3
    assert vds3["entry/data/v"].shape == vds1.shape
    assert vds3["entry/data/v"].dtype == v.dtype
    assert vds3["entry/data/v"].sum() == 6 * v.sum()
    assert vds3.nxfile["entry/data/v"].is_virtual