1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
import os
import warnings
import numpy as np
import pytest
from nexusformat.nexus.tree import (NXdata, NXentry, NXfield, NXroot,
NXsubentry, NXvirtualfield, nxconsolidate,
nxload)
@pytest.fixture
def data(x, y, z, v):
"""
Returns a simple NXdata object with a title.
"""
return NXdata(v, (z, y, x), title="Title")
@pytest.fixture
def data2(v):
"""
Returns a different, simple NXdata object with a title.
"""
v2 = v[0]
v2.resize((1, 5, 10))
return NXdata(v2)
@pytest.fixture
def empty_data():
"""
Returns a default NXdata instance.
"""
return NXdata()
@pytest.fixture
def NXdata_from_empty_01(empty_data, x, y, z, v):
empty_data.nxsignal = v
empty_data.nxaxes = (z, y, x)
return empty_data
@pytest.fixture
def NXdata_from_empty_02(empty_data, x, y, z, v):
empty_data["v"] = v
empty_data["x"] = x
empty_data["y"] = y
empty_data["z"] = z
empty_data.nxsignal = "v"
empty_data.nxaxes = ("z", "y", "x")
return empty_data
def test_data_creation(data):
assert "signal" in data.attrs
assert "axes" in data.attrs
assert len(data.attrs["axes"]) == 3
assert data.ndim == 3
assert data.shape == (2, 5, 10)
assert data.nxsignal.nxname == "v"
assert data.nxsignal.ndim == 3
assert data.nxsignal.shape == (2, 5, 10)
assert data.nxsignal.any()
assert not data.nxsignal.all()
assert [axis.nxname for axis in data.nxaxes] == ["z", "y", "x"]
assert [axis.ndim for axis in data.nxaxes] == [1, 1, 1]
assert [axis.shape for axis in data.nxaxes] == [(3,), (6,), (11,)]
assert data.nxtitle == "Title"
def test_default_data(data):
root = NXroot(NXentry(data))
root["entry/data"].set_default()
assert root.get_default() is root["entry/data"]
assert root["entry"].get_default() is root["entry/data"]
assert root["entry/data"].get_default() is root["entry/data"]
assert root.plottable_data is root["entry/data"]
root["entry/subentry"] = NXsubentry(data)
root["entry/subentry/data"].set_default()
assert root.get_default() is root["entry/data"]
assert root["entry/subentry"].get_default() is root["entry/subentry/data"]
assert root["entry/subentry"].plottable_data is root["entry/subentry/data"]
root["entry/subentry/data"].set_default(over=True)
assert root.get_default() is root["entry/subentry/data"]
assert root["entry"].get_default() is root["entry/subentry/data"]
assert root["entry/data"].get_default() is root["entry/data"]
assert root.plottable_data is root["entry/subentry/data"]
def test_plottable_data_01(data):
assert data.is_plottable()
assert data.plottable_data is data
assert data.plot_rank == 3
assert data.plot_rank == data.nxsignal.ndim
assert data.plot_axes == data.nxaxes
assert data.nxsignal.valid_axes(data.nxaxes)
def test_plottable_data_02(data2):
assert data2.shape == (1, 5, 10)
assert data2.plot_shape == (5, 10)
assert data2.plot_rank == 2
assert data2.plot_rank == data2.nxsignal.ndim - 1
@pytest.mark.parametrize(
"data_fixture_name",
['NXdata_from_empty_01',
'NXdata_from_empty_02']
)
def test_signal_selection(data_fixture_name, z, v, request):
data = request.getfixturevalue(data_fixture_name)
assert data.nxsignal.nxname == "v"
assert [axis.nxname for axis in data.nxaxes] == ["z", "y", "x"]
assert np.array_equal(data.nxsignal, v)
assert np.array_equal(data.nxaxes[0], z)
def test_rename(NXdata_from_empty_01):
data = NXdata_from_empty_01
data["x"].rename("xx")
data["y"].rename("yy")
data["z"].rename("zz")
data["v"].rename("vv")
assert data.nxsignal.nxname == "vv"
assert [axis.nxname for axis in data.nxaxes] == ["zz", "yy", "xx"]
def test_size_one_axis(x, z):
y1 = np.array((1), dtype=np.float64)
v1 = NXfield(np.linspace(0, 10*1*2, num=10*1*2, dtype=np.int64), name="v")
v1.resize((2, 1, 10))
data = NXdata(v1, (z, y1, x))
assert data.is_plottable()
assert data.plottable_data is data
assert data.plot_rank == 2
assert data.plot_rank == data.nxsignal.ndim - 1
assert len(data.plot_axes) == 2
assert data.plot_shape == (2, 10)
assert data.nxsignal.valid_axes(data.plot_axes)
def test_data_operations(data, v):
new_data = data + 1
assert np.array_equal(new_data.nxsignal.nxvalue, v + 1)
assert new_data.nxaxes == data.nxaxes
assert new_data.nxsignal.nxname == "v"
assert [axis.nxname for axis in data.nxaxes] == ["z", "y", "x"]
new_data = data - 1
assert np.array_equal(new_data.nxsignal, v - 1)
new_data = data * 2
assert np.array_equal(new_data.nxsignal, v * 2)
new_data = 2 * data
assert np.array_equal(new_data.nxsignal, v * 2)
new_data = data / 2
assert np.array_equal(new_data.nxsignal, v / 2)
new_data = 2 * data - data
assert np.array_equal(new_data.nxsignal, v)
def test_data_errors():
y1 = NXfield(np.linspace(1, 10, 10), name="y")
v1 = NXfield(y1**2, name="v")
e1 = NXfield(np.sqrt(v1))
data = NXdata(v1, (y1), errors=e1)
assert data.nxerrors is not None
assert data.nxerrors.nxname == "v_errors"
assert np.array_equal(data.nxerrors, e1)
data = NXdata(v1, (y1))
data.nxerrors = e1
new_data = 2 * data
assert np.array_equal(new_data.nxerrors, 2 * e1)
new_data = 2 * data - data
assert np.array_equal(new_data.nxerrors, e1 * np.sqrt(5))
new_data = data - data / 2
assert np.array_equal(new_data.nxerrors, e1 * np.sqrt(1.25))
def test_data_weights():
y1 = NXfield(np.linspace(1, 10, 10), name="y")
v1 = NXfield(y1**2, name="v")
w1 = NXfield(np.sqrt(v1))
data = NXdata(v1, (y1), errors=y1, weights=w1)
assert data.nxweights is not None
assert data.nxweights.nxname == "v_weights"
assert np.array_equal(data.nxweights, w1)
weighted_data = data.weighted_data()
assert np.array_equal(weighted_data.nxsignal, v1 / w1)
assert np.array_equal(weighted_data.nxerrors, y1 / w1)
assert weighted_data.nxaxes == data.nxaxes
data = NXdata(v1, (y1))
data.nxweights = w1
new_data = 2 * data
assert np.array_equal(new_data.nxweights, 2 * w1)
new_data = 2 * data - data
assert np.array_equal(new_data.nxweights, w1)
new_data = data - data / 2
assert np.array_equal(new_data.nxweights, w1/2)
def test_data_angles(data):
data.nxangles = [120, 90, 90]
assert data.nxangles == [120.0, 90.0, 90.0]
def test_data_slabs(data, x, y, v):
slab = data[0, :, :]
assert np.array_equal(slab.nxsignal, v[0])
assert slab.plot_rank == 2
assert slab.plot_shape == v[0].shape
assert slab.nxaxes == [y, x]
slab = data[0, 3.:12., 2.:18.]
assert slab.plot_shape == (v.shape[1]-2, v.shape[2]-2)
assert slab.plot_axes == [y[1:-1], x[1:-1]]
slab = data[0, 3.5:11.5, 2.5:17.5]
assert slab.shape == (v.shape[1]-2, v.shape[2]-2)
assert slab.plot_shape == (v.shape[1]-2, v.shape[2]-2)
assert slab.plot_axes == [y[1:-1], x[1:-1]]
slab1 = data[0:0, 3.5:11.5, 2.5:17.5]
slab2 = data[0:1, 3.5:11.5, 2.5:17.5]
assert slab1.shape == slab.shape
assert slab2.shape == slab.shape
def test_data_projections(x, y, z, v):
d1 = NXdata(v[0], (y, x))
assert d1.nxaxes == [d1["y"], d1["x"]]
p1 = d1.project((1, 0))
p2 = d1.project((0, 1), limits=((3., 9.), (4., 16.)))
assert p1.nxaxes == [p1["x"], p1["y"]]
assert np.array_equal(p1["x"].nxvalue, d1["x"])
assert p2.nxaxes == [p2["y"], p2["x"]]
assert np.array_equal(p2["x"].nxvalue, d1["x"][4.:16.])
assert np.array_equal(p2["x"].nxvalue, d1["x"][2:9])
d2 = NXdata(v, (z, y, x))
p3 = d2.project((0, 1), ((0., 8.), (3., 9.), (4., 16.)))
assert p3.nxaxes == [p3["z"], p3["y"]]
assert np.array_equal(p3["y"].nxvalue, d2["y"][3.:9.])
assert np.array_equal(p3["y"].nxvalue, d2["y"][1:4])
assert p3["x"] == 10.
assert p3["x"].attrs["minimum"] == 4.
assert p3["x"].attrs["maximum"] == 16.
assert p3["x"].attrs["summed_bins"] == 7
assert p3["v"].sum() == d2.v[:, 1:3, 2:8].sum()
p4 = d2.project((0, 1), ((0., 8.), (3., 9.), (4., 16.)), summed=False)
assert p4["v"].sum() == d2.v[:, 1:3, 2:8].sum() / \
p4["x"].attrs["summed_bins"]
def test_data_transpose(data):
signal = data.nxsignal
assert data.transpose().shape == signal.shape[::-1]
axes = [2, 0, 1]
transposed_data = data.transpose(axes)
assert transposed_data.shape == signal.transpose(axes).shape
assert ([axis.nxname for axis in transposed_data.nxaxes] ==
[data.nxaxes[i].nxname for i in axes])
def test_data_smoothing(x):
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
data = NXdata(np.sin(x), (x))
smooth_data = data.smooth(n=101, xmin=x.min(), xmax=x.max())
assert smooth_data.nxsignal.shape == (101,)
assert smooth_data.nxaxes[0].shape == (101,)
assert smooth_data.nxsignal[0] == pytest.approx(np.sin(x)[0])
assert smooth_data.nxsignal[-1] == pytest.approx(np.sin(x)[-1])
smooth_data = data.smooth(factor=4)
assert smooth_data.nxsignal.shape == (41,)
assert smooth_data.nxaxes[0].shape == (41,)
assert smooth_data.nxsignal[0] == pytest.approx(np.sin(x)[0])
assert smooth_data.nxsignal[4] == pytest.approx(np.sin(x)[1])
assert smooth_data.nxsignal[-1] == pytest.approx(np.sin(x)[-1])
def test_data_selection():
xx = np.linspace(0, 20.0, 21, dtype=float)
yy = np.ones(shape=xx.shape, dtype=float)
yy[np.where(np.remainder(xx, 4) == 0.0)] = 2.0
data = NXdata(yy, xx)
selected_data = data.select(4.0)
assert selected_data.shape == (6,)
assert np.all(selected_data.nxsignal == 2.0)
yy[(np.array((1, 3, 5, 7, 9, 11, 13, 15, 17, 19)),)] = 1.5
data = NXdata(yy, xx)
selected_data = data.select(4.0, offset=1.0)
assert selected_data.shape == (5,)
assert np.all(selected_data.nxsignal == 1.5)
selected_data = data.select(4.0, offset=1.0, symmetric=True)
assert selected_data.shape == (10,)
assert np.all(selected_data.nxsignal == 1.5)
def test_data_moments(peak1D, arr1D):
data = NXdata(peak1D, arr1D)
assert data.sum() == data.nxsignal.nxvalue.sum()
assert np.isclose(data.moment(1), 50.0, rtol=1e-3)
assert np.isclose(data.moment(2), 100.0, rtol=1e-3)
assert np.isclose(data.std(), 10.0, rtol=1e-3)
assert np.isclose(data.average(), data.nxsignal.nxvalue.sum() / 101.0)
def test_image_data(x, y, z, v, im):
root = NXroot(NXentry(NXdata(im)))
root["entry"].attrs["default"] = "data"
root["entry/other_data"] = NXdata(v, (z, y, x), title="Title")
assert root["entry/data/image"].is_image()
assert root["entry/data"].is_image()
assert root.plottable_data.is_image()
assert root["entry"].plottable_data.is_image()
assert not root["entry/other_data"].is_image()
def test_smart_indices(x, v):
ind = [1, 3, 5]
assert all(x[ind].nxvalue == x.nxvalue[ind])
assert all(v[v > 50].nxvalue == v.nxvalue[v.nxvalue > 50])
assert all(v[1, 0, ind].nxvalue == v.nxvalue[1, 0, ind])
x[ind] = 0
assert x.any() and not x[ind].any()
ind = np.array([[3, 7], [4, 5]])
assert np.all(x[ind].nxvalue == x.nxvalue[ind])
row = np.array([0, 1, 2])
col = np.array([2, 1, 3])
assert all(v[0][row, col].nxvalue == v[0].nxvalue[row, col])
assert np.all(v[0][row[:, np.newaxis], col].nxvalue ==
v[0].nxvalue[row[:, np.newaxis], col])
@pytest.mark.parametrize("path", [True, False])
def test_virtual_fields(tmpdir, path, v):
s1 = NXroot(NXentry(NXdata(v)))
s2 = NXroot(NXentry(NXdata(2*v)))
s3 = NXroot(NXentry(NXdata(3*v)))
s1.save(os.path.join(tmpdir, "s1.nxs"), "w")
s2.save(os.path.join(tmpdir, "s2.nxs"), "w")
s3.save(os.path.join(tmpdir, "s3.nxs"), "w")
sources = [f.nxfilename for f in [s1, s2, s3]]
if path:
vds1 = NXvirtualfield("entry/data/v", sources, shape=v.shape,
dtype=v.dtype)
else:
vds1 = NXvirtualfield(s1["entry/data/v"], sources)
assert vds1.shape == (3,) + v.shape
assert vds1.dtype == v.dtype
assert vds1.sum() == 6 * v.sum()
vds2 = nxconsolidate(sources, "entry/data")
assert vds2.nxsignal.shape == vds1.shape
assert vds2.nxsignal.dtype == v.dtype
assert vds2.sum() == 6 * v.sum()
NXroot(NXentry(vds2)).save(os.path.join(tmpdir, "vds.nxs"), "w")
vds3 = nxload(os.path.join(tmpdir, "vds.nxs"))
assert "entry/data/v" in vds3
assert vds3["entry/data/v"].shape == vds1.shape
assert vds3["entry/data/v"].dtype == v.dtype
assert vds3["entry/data/v"].sum() == 6 * v.sum()
assert vds3.nxfile["entry/data/v"].is_virtual
|