File: spikeFeatures.py

package info (click to toggle)
python-nixio 1.5.4%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,888 kB
  • sloc: python: 12,527; cpp: 832; makefile: 25
file content (146 lines) | stat: -rw-r--r-- 6,373 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

"""Copyright © 2014 - 2021 German Neuroinformatics Node (G-Node)

 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted under the terms of the BSD License. See
 LICENSE file in the root of the Project.

 Author: Jan Grewe <jan.grewe@g-node.org>

 See https://github.com/G-node/nix/wiki for more information.

"""
import nixio
import numpy as np
import scipy.signal as signal
import matplotlib.pylab as plt

import lif
import docutils

def fake_neuron(stepsize=0.001, offset=.8, sta_offset=1000):
    stimulus = np.random.randn(102000) * 3.5
    b, a = signal.butter(1, 12.5, fs=1. / stepsize, btype="low")
    stimulus = signal.filtfilt(b, a, stimulus)
    stimulus = stimulus[1000:-1000]
    lif_model = lif.LIF(stepsize=stepsize, offset=offset)
    time, v, spike_times = lif_model.run_stimulus(stimulus)
    snippets = np.zeros((len(spike_times), 2 * sta_offset))

    for i, t in enumerate(spike_times):
        index = int(round(t / stepsize))
        if index < sta_offset:
            snip = stimulus[0:index + sta_offset]
            snippets[i, -len(snip):] = snip
        elif (index + sta_offset) > len(stimulus):
            snip = stimulus[index - sta_offset:]
            snippets[i, 0:len(snip)] = snip
        else:
            snippets[i, :] = stimulus[index - sta_offset:index + sta_offset]

    return time, v, spike_times, snippets


def plot_data(tag):
    data_array = tag.references[0]
    voltage = np.zeros(data_array.shape)
    data_array.read_direct(voltage)

    x_axis = data_array.dimensions[0]
    time = x_axis.axis(data_array.data_extent[0])

    spike_times = tag.positions[:]

    feature_data_array = tag.features[0].data
    snippets = tag.features[0].data[:]

    single_snippet = tag.feature_data(3, 0)[:]

    snippet_time_dim = feature_data_array.dimensions[1]
    snippet_time = snippet_time_dim.axis(feature_data_array.data_extent[1])

    response_axis = plt.subplot2grid((2, 2), (0, 0), rowspan=1, colspan=2)
    single_snippet_axis = plt.subplot2grid((2, 2), (1, 0), rowspan=1, colspan=1)
    average_snippet_axis = plt.subplot2grid((2, 2), (1, 1), rowspan=1, colspan=1)

    response_axis.plot(time, voltage, color='dodgerblue', label=data_array.name)
    response_axis.scatter(spike_times, np.ones(spike_times.shape) * np.max(voltage), color='red', label=tag.name)
    response_axis.set_xlabel(x_axis.label + ((" [" + x_axis.unit + "]") if x_axis.unit else ""))
    response_axis.set_ylabel(data_array.label + ((" [" + data_array.unit + "]") if data_array.unit else ""))
    response_axis.set_title(data_array.name)
    response_axis.set_xlim(0, np.max(time))
    response_axis.set_ylim((1.2 * np.min(voltage), 1.2 * np.max(voltage)))
    response_axis.legend(ncol=2, loc="lower center", fontsize=8)

    single_snippet_axis.plot(snippet_time, single_snippet.T, color="red", label=("snippet No 4"))
    single_snippet_axis.set_xlabel(snippet_time_dim.label + ((" [" + snippet_time_dim.unit + "]") if snippet_time_dim.unit else ""))
    single_snippet_axis.set_ylabel(feature_data_array.label + ((" [" + feature_data_array.unit + "]") if feature_data_array.unit else ""))
    single_snippet_axis.set_title("single stimulus snippet")
    single_snippet_axis.set_xlim(np.min(snippet_time), np.max(snippet_time))
    single_snippet_axis.set_ylim((1.2 * np.min(snippets[3, :]), 1.2 * np.max(snippets[3, :])))
    single_snippet_axis.legend()

    mean_snippet = np.mean(snippets, axis=0)
    std_snippet = np.std(snippets, axis=0)
    average_snippet_axis.fill_between(snippet_time, mean_snippet + std_snippet, mean_snippet - std_snippet, color="tab:red", alpha=0.25)
    average_snippet_axis.plot(snippet_time, mean_snippet, color="red", label=(feature_data_array.name + str(4)))
    average_snippet_axis.set_xlabel(snippet_time_dim.label + ((" [" + snippet_time_dim.unit + "]") if snippet_time_dim.unit else ""))
    average_snippet_axis.set_ylabel(feature_data_array.label + ((" [" + feature_data_array.unit + "]") if feature_data_array.unit else ""))
    average_snippet_axis.set_title("spike-triggered average")
    average_snippet_axis.set_xlim(np.min(snippet_time), np.max(snippet_time))
    average_snippet_axis.set_ylim((1.2 * np.min(mean_snippet - std_snippet), 1.2 * np.max(mean_snippet + std_snippet)))

    plt.subplots_adjust(left=0.15, top=0.875, bottom=0.1, right=0.98, hspace=0.35, wspace=0.25)
    plt.gcf().set_size_inches((5.5, 4.5))
    # plt.savefig("../images/spike_features.png")
    if docutils.is_running_under_pytest():
        plt.close()
    else:
        plt.show()


def main():
    stepsize = 0.0001  # s
    sta_offset = 1000  # samples
    time, voltage, spike_times, sts = fake_neuron(stepsize=0.0001, sta_offset=sta_offset)

    # create a new file overwriting any existing content
    file_name = 'spike_features.h5'
    file = nixio.File.open(file_name, nixio.FileMode.Overwrite)

    # create a 'Block' that represents a grouping object. Here, the recording session.
    # it gets a name and a type
    block = file.create_block("block name", "nix.session")

    # create a 'DataArray' to take the membrane voltage
    data = block.create_data_array("membrane voltage", "nix.regular_sampled.time_series", data=voltage, label="membrane voltage")
    # add descriptors for the time axis
    data.append_sampled_dimension(stepsize, label="time", unit="s")

    # create the positions DataArray
    positions = block.create_data_array("times", "nix.events.spike_times", data=spike_times)
    positions.append_range_dimension_using_self()

    # create a MultiTag
    multi_tag = block.create_multi_tag("spike times", "nix.events.spike_times", positions)
    multi_tag.references.append(data)

    # save stimulus snippets in a DataArray
    snippets = block.create_data_array("spike triggered stimulus", "nix.regular_sampled.multiple_series", data=sts, label="stimulus", unit="nA")
    snippets.append_set_dimension()
    snippets.append_sampled_dimension(stepsize, offset=-sta_offset * stepsize, label="time", unit="s")

    # set snippets as an indexed feature of the multi_tag
    multi_tag.create_feature(snippets, nixio.LinkType.Indexed)

    # let's plot the data from the stored information
    plot_data(multi_tag)
    file.close()


if __name__ == '__main__':
    main()