File: test_data_array.py

package info (click to toggle)
python-nixio 1.5.4%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,888 kB
  • sloc: python: 12,527; cpp: 832; makefile: 25
file content (581 lines) | stat: -rw-r--r-- 21,807 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# -*- coding: utf-8 -*-
# Copyright © 2014, German Neuroinformatics Node (G-Node)
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted under the terms of the BSD License. See
# LICENSE file in the root of the Project.
import os
import time
import unittest
import numpy as np
import nixio as nix
from nixio.data_array import DataSliceMode
from nixio.exceptions import IncompatibleDimensions
from .tmp import TempDir


class TestDataArray(unittest.TestCase):

    def setUp(self):
        self.tmpdir = TempDir("dataarraytest")
        self.testfilename = os.path.join(self.tmpdir.path, "dataarraytest.nix")
        self.file = nix.File.open(self.testfilename, nix.FileMode.Overwrite)
        self.block = self.file.create_block("test block", "recordingsession")
        self.array = self.block.create_data_array("test array", "signal",
                                                  nix.DataType.Double, (100, ))
        self.other = self.block.create_data_array("other array", "signal",
                                                  nix.DataType.Double, (100, ))

    def tearDown(self):
        del self.file.blocks[self.block.id]
        self.file.close()
        self.tmpdir.cleanup()

    def test_data_array_eq(self):
        assert self.array == self.array
        assert not self.array == self.other
        assert self.array is not None

    def test_data_array_id(self):
        assert self.array.id is not None

    def test_data_array_name(self):
        assert self.array.name is not None

    def test_data_array_type(self):
        def set_none():
            self.array.type = None

        assert self.array.type is not None
        self.assertRaises(Exception, set_none)

        self.array.type = "foo type"
        assert self.array.type == "foo type"

    def test_data_array_definition(self):
        assert self.array.definition is None

        self.array.definition = "definition"
        assert self.array.definition == "definition"

        self.array.definition = None
        assert self.array.definition is None

    def test_data_array_timestamps(self):
        created_at = self.array.created_at
        assert created_at > 0

        updated_at = self.array.updated_at
        assert updated_at > 0

        self.array.force_created_at(1403530068)
        assert self.array.created_at == 1403530068

    def test_data_array_label(self):
        assert self.array.label is None

        self.array.label = "label"
        assert self.array.label == "label"

        self.array.label = None
        assert self.array.label is None

    def test_data_array_unit(self):
        assert self.array.unit is None

        self.array.unit = "mV"
        assert self.array.unit == "mV"

        self.array.unit = "0.5*ms"
        assert self.array.unit == "0.5*ms"

        self.array.unit = None
        assert self.array.unit is None

    def test_data_array_exp_origin(self):
        assert self.array.expansion_origin is None

        data = [10, 29, 33]
        intarray = self.block.create_data_array("intarray", "array", nix.DataType.Int64, data=data)

        intarray.expansion_origin = 10.2
        assert intarray.expansion_origin == 10.2
        np.testing.assert_almost_equal(intarray[:], np.array(data) - 10.2)

        # single value retrieval
        np.testing.assert_almost_equal(intarray[1], data[1] - 10.2)

        intarray.expansion_origin = None
        assert intarray.expansion_origin is None
        np.testing.assert_almost_equal(intarray[:], np.array(data))

    def test_data_array_coefficients(self):
        assert self.array.polynom_coefficients == ()

        self.array.polynom_coefficients = (1.1, 2.2)
        assert self.array.polynom_coefficients == (1.1, 2.2)

        data = [10, 29, 33]
        intarray = self.block.create_data_array("intarray", "array", nix.DataType.Int64, data=data)
        intarray.polynom_coefficients = (0.0, 0.1)
        np.testing.assert_almost_equal(intarray[:], np.array(data) * 0.1)

        # single value retrieval
        np.testing.assert_almost_equal(intarray[1], data[1] * 0.1)

        # Coefficient deletion
        intarray.polynom_coefficients = None
        np.testing.assert_almost_equal(intarray[:], np.array(data))

    def test_data_array_data(self):
        assert self.array.polynom_coefficients == ()

        data = np.array([float(i) for i in range(100)])
        dout = np.empty_like(data)
        self.array.write_direct(data)
        assert self.array.dtype == np.dtype(float)
        self.array.read_direct(dout)
        assert np.array_equal(data, dout)
        dout = np.array(self.array)
        assert np.array_equal(data, dout)
        assert self.array.data_extent == data.shape
        assert self.array.data_extent == self.array.shape
        assert self.array.size == data.size

        assert len(self.array) == len(data)

        dout = np.array(range(100))
        assert np.array_equal(data, dout)

        dout = self.array[...]
        assert np.array_equal(data, dout)

        # indexed writing (1-d)
        data = np.array([float(-i) for i in range(100)])
        self.array[()] = data
        assert np.array_equal(self.array[...], data)

        self.array[...] = [float(-i) for i in range(100)]
        assert np.array_equal(self.array[()], data)
        assert np.array_equal(self.array[0:-10], data[0:-10])
        assert np.array_equal(self.array[-10], np.array([data[-10]]))

        self.array[0] = 42
        assert self.array[0] == 42.0

        # changing shape via data_extent property
        self.array.data_extent = (200, )
        assert self.array.data_extent == (200, )

        data = np.eye(123)
        da1 = self.block.create_data_array("double array", "signal", nix.DataType.Double, (123, 123))
        dset = da1
        dset.write_direct(data)
        dout = np.empty_like(data)
        dset.read_direct(dout)
        assert np.array_equal(data, dout)

        # indexing support in 2-d arrays
        with self.assertRaises(IndexError):
            _ = self.array[[], [1, 2]]

        dout = dset[12]
        assert dout.shape == data[12].shape
        assert np.array_equal(dout, data[12])
        assert np.array_equal(dset[()], data)
        assert np.array_equal(dset[...], data)
        assert np.array_equal(dset[12, ...], data[12, ...])
        assert np.array_equal(dset[..., 12], data[..., 12])
        assert np.array_equal(dset[1:], data[1:])
        assert np.array_equal(dset[-20:, -20:], data[123-20:, 123-20:])
        assert np.array_equal(dset[:1], data[:1])
        assert np.array_equal(dset[:-1, :-1], data[1:123, 1:123])
        assert np.array_equal(dset[1:10, 1:10], data[1:10, 1:10])
        assert np.array_equal(dset[1:-2, 1:-2], data[1:121, 1:121])

        da3 = self.block.create_data_array("int identity array", "signal",
                                           nix.DataType.Int32, (123, 123))
        assert da3.shape == (123, 123)
        assert da3.dtype == np.dtype('i4')

        data = np.random.rand(3, 4, 5)
        da4 = self.block.create_data_array("3d array", "signal",
                                           nix.DataType.Double, (3, 4, 5))
        dset = da4
        dset.write_direct(data)
        assert dset.shape == data.shape
        assert len(dset) == len(data)
        assert dset.size == data.size
        assert np.array_equal(dset[2, ...], data[2, ...])
        assert np.array_equal(dset[-1, ...], data[2, ...])
        assert np.array_equal(dset[..., 3], data[..., 3])
        assert np.array_equal(dset[..., -2], data[..., 3])
        assert np.array_equal(dset[2, ..., 3], data[2, ..., 3])
        assert np.array_equal(dset[2, ..., -2], data[2, ..., 3])
        assert np.array_equal(dset[1:2, ..., 3:5], data[1:2, ..., 3:5])
        assert np.array_equal(dset[1:2, ..., 3:-1], data[1:2, ..., 3:4])

        # indexed writing (n-d)
        data = np.random.rand(2, 2)
        dset[1, 0:2, 0:2] = data
        assert np.array_equal(dset[1, 0:2, 0:2], data)

        # test inferring shape & dtype from data, and writing the data
        test_ten = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
        test_data = np.array(test_ten, dtype=int)
        da = self.block.create_data_array('created_from_data', 'b',
                                          data=test_data)
        assert da.shape == test_data.shape
        assert np.array_equal(test_data, da[:])
        assert test_ten == [x for x in da]

        # test for exceptions
        self.assertRaises(ValueError, self.block.create_data_array, 'x', 'y')
        self.assertRaises(ValueError, self.block.create_data_array,
                          'x', 'y', data=test_data, shape=(1, 1, 1))

        # test appending
        data = np.zeros((10, 5))
        da = self.block.create_data_array('append', 'double', data=data)
        to_append = np.zeros((2, 5))

        da.append(to_append)
        assert da.shape == (12, 5)

        to_append = np.zeros((12, 2))
        da.append(to_append, axis=1)
        assert da.shape == (12, 7)

        self.assertRaises(ValueError, da.append, np.zeros((3, 3, 3)))
        self.assertRaises(ValueError, da.append, np.zeros((5, 5)))

    def test_data_array_dtype(self):
        da = self.block.create_data_array('dtype_f8', 'b', 'f8', (10, 10))
        assert da.dtype == np.dtype('f8')

        da = self.block.create_data_array('dtype_i16', 'b', np.int16, (10, 10))
        data = da[:]
        assert da.dtype == np.int16
        assert data.dtype == np.int16

        da = self.block.create_data_array('dtype_int', 'b', int, (10, 10))
        assert da.dtype == np.dtype(int)

        da = self.block.create_data_array('dtype_ndouble', 'b',
                                          nix.DataType.Double, (10, 10))
        assert da.dtype == np.dtype('f8')

        da = self.block.create_data_array('dtype_auto', 'b', None, (10, 10))
        assert da.dtype == np.dtype('f8')

        test_data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 0], dtype=int)
        da = self.block.create_data_array('dtype_int_from_data', 'b',
                                          data=test_data)
        assert da.dtype == test_data.dtype

        bdata = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '0']
        bdata = [bytes(x, 'UTF-8') for x in bdata]

        void_data = np.array(bdata, dtype='V1')
        da = self.block.create_data_array('dtype_opaque', 'b', data=void_data)
        assert da.dtype == np.dtype('V1')
        assert np.array_equal(void_data, da[:])

    def test_array_unicode(self):
        da = self.block.create_data_array("unicode", "lotsatext",
                                          nix.DataType.String, shape=(4,))
        data = ["Καφές", "Café", "咖啡", "☕"]
        da.write_direct(data)

        assert data == list(da[:])

    def test_data_array_dimensions(self):
        assert len(self.array.dimensions) == 0

        self.array.append_set_dimension()
        self.array.append_range_dimension(range(10))
        self.array.append_sampled_dimension(0.1)

        assert len(self.array.dimensions) == 3

        self.assertRaises(KeyError, lambda: self.array.dimensions["notexist"])
        self.assertRaises(IndexError, lambda: self.array.dimensions[-4])
        self.assertRaises(IndexError, lambda: self.array.dimensions[3])

        assert isinstance(str(self.array.dimensions), str)
        assert isinstance(repr(self.array.dimensions), str)

        dims = list(self.array.dimensions)
        for i in range(3):
            assert dims[i].index == self.array.dimensions[i].index
            assert(dims[i].dimension_type ==
                   self.array.dimensions[i].dimension_type)

            assert(self.array.dimensions[i].index ==
                   self.array.dimensions[i-3].index)

        self.array.delete_dimensions()

    def test_data_array_sources(self):
        source1 = self.block.create_source("source1", "channel")
        source2 = self.block.create_source("source2", "electrode")

        assert len(self.array.sources) == 0

        self.array.sources.append(source1)
        self.array.sources.append(source2)

        self.assertRaises(TypeError, self.array.sources.append, 100)

        assert len(self.array.sources) == 2
        assert source1 in self.array.sources
        assert source2 in self.array.sources

        del self.array.sources[source2]
        assert self.array.sources[0] == source1

        del self.array.sources[source1]
        assert len(self.array.sources) == 0

    def test_data_array_indexing(self):
        data = np.random.rand(50)
        da = self.block.create_data_array("random", "DataArray",
                                          data=data)

        np.testing.assert_almost_equal(data[:], da[:])

        def check_idx(idx):
            np.testing.assert_almost_equal(da[idx], data[idx])

        check_idx(10)
        check_idx(Ellipsis)
        check_idx(slice(10, 15))

    def test_data_array_multi_slicing(self):
        shape = (5, 10, 15, 20)
        da = self.block.create_data_array(
            'test', 'test',
            data=np.random.randint(65000, size=shape)
        )
        self.assertEqual(da[0, 0, 0, 0].shape, (1,))
        self.assertEqual(da[0, 0, 0, :].shape, (20,))
        self.assertEqual(da[0, 0, :, 0].shape, (15,))
        self.assertEqual(da[0, 0, :, :].shape, (15, 20))
        self.assertEqual(da[0, :, 0, 0].shape, (10,))
        self.assertEqual(da[0, :, 0, :].shape, (10, 20))
        self.assertEqual(da[0, :, :, 0].shape, (10, 15))
        self.assertEqual(da[0, :, :, :].shape, (10, 15, 20))
        self.assertEqual(da[:, 0, 0, 0].shape, (5,))
        self.assertEqual(da[:, 0, 0, :].shape, (5, 20))
        self.assertEqual(da[:, 0, :, 0].shape, (5, 15))
        self.assertEqual(da[:, 0, :, :].shape, (5, 15, 20))
        self.assertEqual(da[:, :, 0, 0].shape, (5, 10))
        self.assertEqual(da[:, :, 0, :].shape, (5, 10, 20))
        self.assertEqual(da[:, :, :, 0].shape, (5, 10, 15))
        self.assertEqual(da[:, :, :, :].shape, shape)

    def test_outofbounds_indexing(self):
        # test out of bounds IndexError exception
        oobtestda = self.block.create_data_array("oobdatatest",
                                                 "data", data=[1, 2, 10])
        with self.assertRaises(IndexError):
            _ = oobtestda[3]
        with self.assertRaises(IndexError):
            _ = oobtestda[10]
        with self.assertRaises(IndexError):
            _ = oobtestda[-7]

    def test_data_array_numpy_indexing(self):
        data = np.random.rand(50)
        da = self.block.create_data_array("random", "DataArray",
                                          data=data)

        def check_idx(idx):
            np.testing.assert_almost_equal(da[idx], data[idx])

        check_idx(np.int8(10))
        check_idx(np.int16(20))
        check_idx(np.int32(42))
        check_idx(np.int64(9))

    def test_get_slice(self):
        data2d = np.random.random_sample((100, 2))
        da2d = self.block.create_data_array("get_slice 2d", "Data",
                                            data=data2d)
        da2d.append_range_dimension(np.linspace(10, 19.8, 50))
        da2d.append_set_dimension()
        data = da2d[10:30, 1:2]
        islice = da2d.get_slice((10, 1), (20, 1),
                                mode=nix.DataSliceMode.Index)
        np.testing.assert_almost_equal(data, islice)
        dslice = da2d.get_slice((12.0, 1), (4.0, 1),
                                mode=nix.DataSliceMode.Data)
        np.testing.assert_almost_equal(data, dslice)
        dslice2 = da2d.get_slice((0.0, 1), (16.0, 1),
                                mode=nix.DataSliceMode.Data)
        np.testing.assert_almost_equal(da2d[0:30, 1:2], dslice2)

        data3d = np.random.random_sample((30, 30, 5))
        da3d = self.block.create_data_array("get_slice 3d", "Data",
                                            data=data3d)
        sdim = da3d.append_sampled_dimension(0.1)
        sdim.offset = 0.5
        da3d.append_sampled_dimension(2.0)
        da3d.append_set_dimension()

        data = data3d[5:15, 20:25, 3:5]
        islice = da3d.get_slice((5, 20, 3), (10, 5, 2),
                                mode=nix.DataSliceMode.Index)
        np.testing.assert_almost_equal(data, islice)
        dslice = da3d.get_slice((1.0, 40.0, 3), (1.0, 10.0, 2),
                                mode=nix.DataSliceMode.Data)
        np.testing.assert_almost_equal(data, dslice)

        with self.assertRaises(IncompatibleDimensions):
            da2d.get_slice((0, 0, 0), (10, 10, 10))

        with self.assertRaises(IncompatibleDimensions):
            da2d.get_slice((0, 0), (10,))

        with self.assertRaises(IncompatibleDimensions):
            da3d.get_slice((0, 0, 0), (3, 9, 40, 1))

        dslice = da2d.get_slice([20, 1], [10, 1], DataSliceMode.Data)
        self.assertFalse(dslice.valid)

        time_vector = np.arange(0.0, 10., 0.001)
        indices = np.random.rand(len(time_vector))

        event_data = time_vector[(indices < 0.1)]
        event_data = event_data[(event_data < 4) | (event_data > 7)]

        event_da = self.block.create_data_array("event_data", "nix.events", data=event_data, unit="s")
        event_da.append_range_dimension_using_self()
        selection = event_da.get_slice([4.5], [1.0], nix.DataSliceMode.Data)
        self.assertFalse(selection.valid)
        np.testing.assert_almost_equal(np.array([]), selection[:])

    def test_dim_one_based(self):
        self.array.append_set_dimension()
        self.array.append_range_dimension(range(10))
        self.array.append_sampled_dimension(0.1)
        dim_container_one_based = self.array.iter_dimensions()
        for idx, dim in dim_container_one_based:
            assert self.array.dimensions[idx-1].dimension_type ==\
                dim.dimension_type

    def test_timestamp_autoupdate(self):
        array = self.block.create_data_array("array.time", "signal",
                                             nix.DataType.Double, (100, ))
        # Append dimensions and check time
        datime = array.updated_at
        time.sleep(1)
        array.append_set_dimension()
        self.assertNotEqual(datime, array.updated_at)

        datime = array.updated_at
        time.sleep(1)
        array.append_sampled_dimension(sampling_interval=0.1)
        self.assertNotEqual(datime, array.updated_at)

        datime = array.updated_at
        time.sleep(1)
        array.append_range_dimension(ticks=[0.1])
        self.assertNotEqual(datime, array.updated_at)

        # other properties
        datime = array.updated_at
        time.sleep(1)
        array.polynom_coefficients = [1.1, 2.2]
        self.assertNotEqual(datime, array.updated_at)

        datime = array.updated_at
        time.sleep(1)
        array.expansion_origin = -1
        self.assertNotEqual(datime, array.updated_at)

        datime = array.updated_at
        time.sleep(1)
        array.label = "lbl"
        self.assertNotEqual(datime, array.updated_at)

        datime = array.updated_at
        time.sleep(1)
        array.unit = "Ms"
        self.assertNotEqual(datime, array.updated_at)

    def test_timestamp_noautoupdate(self):
        self.file.auto_update_timestamps = False
        array = self.block.create_data_array("array.time", "signal",
                                             nix.DataType.Double, (100, ))
        # Append dimensions and check time
        datime = array.updated_at
        time.sleep(1)
        array.append_set_dimension()
        self.assertEqual(datime, array.updated_at)

        datime = array.updated_at
        time.sleep(1)
        array.append_sampled_dimension(sampling_interval=0.1)
        self.assertEqual(datime, array.updated_at)

        datime = array.updated_at
        time.sleep(1)
        array.append_range_dimension(ticks=[0.1])
        self.assertEqual(datime, array.updated_at)

        # other properties
        datime = array.updated_at
        time.sleep(1)
        array.polynom_coefficients = [1.1, 2.2]
        self.assertEqual(datime, array.updated_at)

        datime = array.updated_at
        time.sleep(1)
        array.expansion_origin = -1
        self.assertEqual(datime, array.updated_at)

        datime = array.updated_at
        time.sleep(1)
        array.label = "lbl"
        self.assertEqual(datime, array.updated_at)

        datime = array.updated_at
        time.sleep(1)
        array.unit = "Ms"
        self.assertEqual(datime, array.updated_at)

    def test_data_deletion(self):
        data = [42.1337, 720.3, 190.0009]
        array = self.block.create_data_array("del.test", "test", data=data)
        np.testing.assert_almost_equal(data, array[:])

        array[:] = None
        np.testing.assert_almost_equal([np.nan]*len(data), array[:])

        nda = len(self.block.data_arrays)
        del self.block.data_arrays["del.test"]
        assert len(self.block.data_arrays) == nda-1
        assert "del.test" not in self.block.data_arrays

    def test_single_value_retrieval(self):
        assert self.array[1].shape == (1,)
        self.array.expansion_origin = 0.3
        assert self.array[1].shape == (1,)
        self.array.expansion_origin = None

        assert self.array[1].shape == (1,)
        self.array.polynom_coefficients = (1.2, 3.4)
        assert self.array[1].shape == (1,)
        self.array.polynom_coefficients = None

        assert self.array[1].shape == (1,)
        self.array.expansion_origin = 0.9
        self.array.polynom_coefficients = (1.2, 3.4)
        assert self.array[1].shape == (1,)
        self.array.expansion_origin = None
        self.array.polynom_coefficients = None

        assert self.array[1].shape == (1,)