1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
|
# -*- coding: utf-8 -*-
# Copyright © 2014, German Neuroinformatics Node (G-Node)
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted under the terms of the BSD License. See
# LICENSE file in the root of the Project.
import os
import time
import unittest
import numpy as np
import nixio as nix
from nixio.data_array import DataSliceMode
from nixio.exceptions import IncompatibleDimensions
from .tmp import TempDir
class TestDataArray(unittest.TestCase):
def setUp(self):
self.tmpdir = TempDir("dataarraytest")
self.testfilename = os.path.join(self.tmpdir.path, "dataarraytest.nix")
self.file = nix.File.open(self.testfilename, nix.FileMode.Overwrite)
self.block = self.file.create_block("test block", "recordingsession")
self.array = self.block.create_data_array("test array", "signal",
nix.DataType.Double, (100, ))
self.other = self.block.create_data_array("other array", "signal",
nix.DataType.Double, (100, ))
def tearDown(self):
del self.file.blocks[self.block.id]
self.file.close()
self.tmpdir.cleanup()
def test_data_array_eq(self):
assert self.array == self.array
assert not self.array == self.other
assert self.array is not None
def test_data_array_id(self):
assert self.array.id is not None
def test_data_array_name(self):
assert self.array.name is not None
def test_data_array_type(self):
def set_none():
self.array.type = None
assert self.array.type is not None
self.assertRaises(Exception, set_none)
self.array.type = "foo type"
assert self.array.type == "foo type"
def test_data_array_definition(self):
assert self.array.definition is None
self.array.definition = "definition"
assert self.array.definition == "definition"
self.array.definition = None
assert self.array.definition is None
def test_data_array_timestamps(self):
created_at = self.array.created_at
assert created_at > 0
updated_at = self.array.updated_at
assert updated_at > 0
self.array.force_created_at(1403530068)
assert self.array.created_at == 1403530068
def test_data_array_label(self):
assert self.array.label is None
self.array.label = "label"
assert self.array.label == "label"
self.array.label = None
assert self.array.label is None
def test_data_array_unit(self):
assert self.array.unit is None
self.array.unit = "mV"
assert self.array.unit == "mV"
self.array.unit = "0.5*ms"
assert self.array.unit == "0.5*ms"
self.array.unit = None
assert self.array.unit is None
def test_data_array_exp_origin(self):
assert self.array.expansion_origin is None
data = [10, 29, 33]
intarray = self.block.create_data_array("intarray", "array", nix.DataType.Int64, data=data)
intarray.expansion_origin = 10.2
assert intarray.expansion_origin == 10.2
np.testing.assert_almost_equal(intarray[:], np.array(data) - 10.2)
# single value retrieval
np.testing.assert_almost_equal(intarray[1], data[1] - 10.2)
intarray.expansion_origin = None
assert intarray.expansion_origin is None
np.testing.assert_almost_equal(intarray[:], np.array(data))
def test_data_array_coefficients(self):
assert self.array.polynom_coefficients == ()
self.array.polynom_coefficients = (1.1, 2.2)
assert self.array.polynom_coefficients == (1.1, 2.2)
data = [10, 29, 33]
intarray = self.block.create_data_array("intarray", "array", nix.DataType.Int64, data=data)
intarray.polynom_coefficients = (0.0, 0.1)
np.testing.assert_almost_equal(intarray[:], np.array(data) * 0.1)
# single value retrieval
np.testing.assert_almost_equal(intarray[1], data[1] * 0.1)
# Coefficient deletion
intarray.polynom_coefficients = None
np.testing.assert_almost_equal(intarray[:], np.array(data))
def test_data_array_data(self):
assert self.array.polynom_coefficients == ()
data = np.array([float(i) for i in range(100)])
dout = np.empty_like(data)
self.array.write_direct(data)
assert self.array.dtype == np.dtype(float)
self.array.read_direct(dout)
assert np.array_equal(data, dout)
dout = np.array(self.array)
assert np.array_equal(data, dout)
assert self.array.data_extent == data.shape
assert self.array.data_extent == self.array.shape
assert self.array.size == data.size
assert len(self.array) == len(data)
dout = np.array(range(100))
assert np.array_equal(data, dout)
dout = self.array[...]
assert np.array_equal(data, dout)
# indexed writing (1-d)
data = np.array([float(-i) for i in range(100)])
self.array[()] = data
assert np.array_equal(self.array[...], data)
self.array[...] = [float(-i) for i in range(100)]
assert np.array_equal(self.array[()], data)
assert np.array_equal(self.array[0:-10], data[0:-10])
assert np.array_equal(self.array[-10], np.array([data[-10]]))
self.array[0] = 42
assert self.array[0] == 42.0
# changing shape via data_extent property
self.array.data_extent = (200, )
assert self.array.data_extent == (200, )
data = np.eye(123)
da1 = self.block.create_data_array("double array", "signal", nix.DataType.Double, (123, 123))
dset = da1
dset.write_direct(data)
dout = np.empty_like(data)
dset.read_direct(dout)
assert np.array_equal(data, dout)
# indexing support in 2-d arrays
with self.assertRaises(IndexError):
_ = self.array[[], [1, 2]]
dout = dset[12]
assert dout.shape == data[12].shape
assert np.array_equal(dout, data[12])
assert np.array_equal(dset[()], data)
assert np.array_equal(dset[...], data)
assert np.array_equal(dset[12, ...], data[12, ...])
assert np.array_equal(dset[..., 12], data[..., 12])
assert np.array_equal(dset[1:], data[1:])
assert np.array_equal(dset[-20:, -20:], data[123-20:, 123-20:])
assert np.array_equal(dset[:1], data[:1])
assert np.array_equal(dset[:-1, :-1], data[1:123, 1:123])
assert np.array_equal(dset[1:10, 1:10], data[1:10, 1:10])
assert np.array_equal(dset[1:-2, 1:-2], data[1:121, 1:121])
da3 = self.block.create_data_array("int identity array", "signal",
nix.DataType.Int32, (123, 123))
assert da3.shape == (123, 123)
assert da3.dtype == np.dtype('i4')
data = np.random.rand(3, 4, 5)
da4 = self.block.create_data_array("3d array", "signal",
nix.DataType.Double, (3, 4, 5))
dset = da4
dset.write_direct(data)
assert dset.shape == data.shape
assert len(dset) == len(data)
assert dset.size == data.size
assert np.array_equal(dset[2, ...], data[2, ...])
assert np.array_equal(dset[-1, ...], data[2, ...])
assert np.array_equal(dset[..., 3], data[..., 3])
assert np.array_equal(dset[..., -2], data[..., 3])
assert np.array_equal(dset[2, ..., 3], data[2, ..., 3])
assert np.array_equal(dset[2, ..., -2], data[2, ..., 3])
assert np.array_equal(dset[1:2, ..., 3:5], data[1:2, ..., 3:5])
assert np.array_equal(dset[1:2, ..., 3:-1], data[1:2, ..., 3:4])
# indexed writing (n-d)
data = np.random.rand(2, 2)
dset[1, 0:2, 0:2] = data
assert np.array_equal(dset[1, 0:2, 0:2], data)
# test inferring shape & dtype from data, and writing the data
test_ten = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
test_data = np.array(test_ten, dtype=int)
da = self.block.create_data_array('created_from_data', 'b',
data=test_data)
assert da.shape == test_data.shape
assert np.array_equal(test_data, da[:])
assert test_ten == [x for x in da]
# test for exceptions
self.assertRaises(ValueError, self.block.create_data_array, 'x', 'y')
self.assertRaises(ValueError, self.block.create_data_array,
'x', 'y', data=test_data, shape=(1, 1, 1))
# test appending
data = np.zeros((10, 5))
da = self.block.create_data_array('append', 'double', data=data)
to_append = np.zeros((2, 5))
da.append(to_append)
assert da.shape == (12, 5)
to_append = np.zeros((12, 2))
da.append(to_append, axis=1)
assert da.shape == (12, 7)
self.assertRaises(ValueError, da.append, np.zeros((3, 3, 3)))
self.assertRaises(ValueError, da.append, np.zeros((5, 5)))
def test_data_array_dtype(self):
da = self.block.create_data_array('dtype_f8', 'b', 'f8', (10, 10))
assert da.dtype == np.dtype('f8')
da = self.block.create_data_array('dtype_i16', 'b', np.int16, (10, 10))
data = da[:]
assert da.dtype == np.int16
assert data.dtype == np.int16
da = self.block.create_data_array('dtype_int', 'b', int, (10, 10))
assert da.dtype == np.dtype(int)
da = self.block.create_data_array('dtype_ndouble', 'b',
nix.DataType.Double, (10, 10))
assert da.dtype == np.dtype('f8')
da = self.block.create_data_array('dtype_auto', 'b', None, (10, 10))
assert da.dtype == np.dtype('f8')
test_data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 0], dtype=int)
da = self.block.create_data_array('dtype_int_from_data', 'b',
data=test_data)
assert da.dtype == test_data.dtype
bdata = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '0']
bdata = [bytes(x, 'UTF-8') for x in bdata]
void_data = np.array(bdata, dtype='V1')
da = self.block.create_data_array('dtype_opaque', 'b', data=void_data)
assert da.dtype == np.dtype('V1')
assert np.array_equal(void_data, da[:])
def test_array_unicode(self):
da = self.block.create_data_array("unicode", "lotsatext",
nix.DataType.String, shape=(4,))
data = ["Καφές", "Café", "咖啡", "☕"]
da.write_direct(data)
assert data == list(da[:])
def test_data_array_dimensions(self):
assert len(self.array.dimensions) == 0
self.array.append_set_dimension()
self.array.append_range_dimension(range(10))
self.array.append_sampled_dimension(0.1)
assert len(self.array.dimensions) == 3
self.assertRaises(KeyError, lambda: self.array.dimensions["notexist"])
self.assertRaises(IndexError, lambda: self.array.dimensions[-4])
self.assertRaises(IndexError, lambda: self.array.dimensions[3])
assert isinstance(str(self.array.dimensions), str)
assert isinstance(repr(self.array.dimensions), str)
dims = list(self.array.dimensions)
for i in range(3):
assert dims[i].index == self.array.dimensions[i].index
assert(dims[i].dimension_type ==
self.array.dimensions[i].dimension_type)
assert(self.array.dimensions[i].index ==
self.array.dimensions[i-3].index)
self.array.delete_dimensions()
def test_data_array_sources(self):
source1 = self.block.create_source("source1", "channel")
source2 = self.block.create_source("source2", "electrode")
assert len(self.array.sources) == 0
self.array.sources.append(source1)
self.array.sources.append(source2)
self.assertRaises(TypeError, self.array.sources.append, 100)
assert len(self.array.sources) == 2
assert source1 in self.array.sources
assert source2 in self.array.sources
del self.array.sources[source2]
assert self.array.sources[0] == source1
del self.array.sources[source1]
assert len(self.array.sources) == 0
def test_data_array_indexing(self):
data = np.random.rand(50)
da = self.block.create_data_array("random", "DataArray",
data=data)
np.testing.assert_almost_equal(data[:], da[:])
def check_idx(idx):
np.testing.assert_almost_equal(da[idx], data[idx])
check_idx(10)
check_idx(Ellipsis)
check_idx(slice(10, 15))
def test_data_array_multi_slicing(self):
shape = (5, 10, 15, 20)
da = self.block.create_data_array(
'test', 'test',
data=np.random.randint(65000, size=shape)
)
self.assertEqual(da[0, 0, 0, 0].shape, (1,))
self.assertEqual(da[0, 0, 0, :].shape, (20,))
self.assertEqual(da[0, 0, :, 0].shape, (15,))
self.assertEqual(da[0, 0, :, :].shape, (15, 20))
self.assertEqual(da[0, :, 0, 0].shape, (10,))
self.assertEqual(da[0, :, 0, :].shape, (10, 20))
self.assertEqual(da[0, :, :, 0].shape, (10, 15))
self.assertEqual(da[0, :, :, :].shape, (10, 15, 20))
self.assertEqual(da[:, 0, 0, 0].shape, (5,))
self.assertEqual(da[:, 0, 0, :].shape, (5, 20))
self.assertEqual(da[:, 0, :, 0].shape, (5, 15))
self.assertEqual(da[:, 0, :, :].shape, (5, 15, 20))
self.assertEqual(da[:, :, 0, 0].shape, (5, 10))
self.assertEqual(da[:, :, 0, :].shape, (5, 10, 20))
self.assertEqual(da[:, :, :, 0].shape, (5, 10, 15))
self.assertEqual(da[:, :, :, :].shape, shape)
def test_outofbounds_indexing(self):
# test out of bounds IndexError exception
oobtestda = self.block.create_data_array("oobdatatest",
"data", data=[1, 2, 10])
with self.assertRaises(IndexError):
_ = oobtestda[3]
with self.assertRaises(IndexError):
_ = oobtestda[10]
with self.assertRaises(IndexError):
_ = oobtestda[-7]
def test_data_array_numpy_indexing(self):
data = np.random.rand(50)
da = self.block.create_data_array("random", "DataArray",
data=data)
def check_idx(idx):
np.testing.assert_almost_equal(da[idx], data[idx])
check_idx(np.int8(10))
check_idx(np.int16(20))
check_idx(np.int32(42))
check_idx(np.int64(9))
def test_get_slice(self):
data2d = np.random.random_sample((100, 2))
da2d = self.block.create_data_array("get_slice 2d", "Data",
data=data2d)
da2d.append_range_dimension(np.linspace(10, 19.8, 50))
da2d.append_set_dimension()
data = da2d[10:30, 1:2]
islice = da2d.get_slice((10, 1), (20, 1),
mode=nix.DataSliceMode.Index)
np.testing.assert_almost_equal(data, islice)
dslice = da2d.get_slice((12.0, 1), (4.0, 1),
mode=nix.DataSliceMode.Data)
np.testing.assert_almost_equal(data, dslice)
dslice2 = da2d.get_slice((0.0, 1), (16.0, 1),
mode=nix.DataSliceMode.Data)
np.testing.assert_almost_equal(da2d[0:30, 1:2], dslice2)
data3d = np.random.random_sample((30, 30, 5))
da3d = self.block.create_data_array("get_slice 3d", "Data",
data=data3d)
sdim = da3d.append_sampled_dimension(0.1)
sdim.offset = 0.5
da3d.append_sampled_dimension(2.0)
da3d.append_set_dimension()
data = data3d[5:15, 20:25, 3:5]
islice = da3d.get_slice((5, 20, 3), (10, 5, 2),
mode=nix.DataSliceMode.Index)
np.testing.assert_almost_equal(data, islice)
dslice = da3d.get_slice((1.0, 40.0, 3), (1.0, 10.0, 2),
mode=nix.DataSliceMode.Data)
np.testing.assert_almost_equal(data, dslice)
with self.assertRaises(IncompatibleDimensions):
da2d.get_slice((0, 0, 0), (10, 10, 10))
with self.assertRaises(IncompatibleDimensions):
da2d.get_slice((0, 0), (10,))
with self.assertRaises(IncompatibleDimensions):
da3d.get_slice((0, 0, 0), (3, 9, 40, 1))
dslice = da2d.get_slice([20, 1], [10, 1], DataSliceMode.Data)
self.assertFalse(dslice.valid)
time_vector = np.arange(0.0, 10., 0.001)
indices = np.random.rand(len(time_vector))
event_data = time_vector[(indices < 0.1)]
event_data = event_data[(event_data < 4) | (event_data > 7)]
event_da = self.block.create_data_array("event_data", "nix.events", data=event_data, unit="s")
event_da.append_range_dimension_using_self()
selection = event_da.get_slice([4.5], [1.0], nix.DataSliceMode.Data)
self.assertFalse(selection.valid)
np.testing.assert_almost_equal(np.array([]), selection[:])
def test_dim_one_based(self):
self.array.append_set_dimension()
self.array.append_range_dimension(range(10))
self.array.append_sampled_dimension(0.1)
dim_container_one_based = self.array.iter_dimensions()
for idx, dim in dim_container_one_based:
assert self.array.dimensions[idx-1].dimension_type ==\
dim.dimension_type
def test_timestamp_autoupdate(self):
array = self.block.create_data_array("array.time", "signal",
nix.DataType.Double, (100, ))
# Append dimensions and check time
datime = array.updated_at
time.sleep(1)
array.append_set_dimension()
self.assertNotEqual(datime, array.updated_at)
datime = array.updated_at
time.sleep(1)
array.append_sampled_dimension(sampling_interval=0.1)
self.assertNotEqual(datime, array.updated_at)
datime = array.updated_at
time.sleep(1)
array.append_range_dimension(ticks=[0.1])
self.assertNotEqual(datime, array.updated_at)
# other properties
datime = array.updated_at
time.sleep(1)
array.polynom_coefficients = [1.1, 2.2]
self.assertNotEqual(datime, array.updated_at)
datime = array.updated_at
time.sleep(1)
array.expansion_origin = -1
self.assertNotEqual(datime, array.updated_at)
datime = array.updated_at
time.sleep(1)
array.label = "lbl"
self.assertNotEqual(datime, array.updated_at)
datime = array.updated_at
time.sleep(1)
array.unit = "Ms"
self.assertNotEqual(datime, array.updated_at)
def test_timestamp_noautoupdate(self):
self.file.auto_update_timestamps = False
array = self.block.create_data_array("array.time", "signal",
nix.DataType.Double, (100, ))
# Append dimensions and check time
datime = array.updated_at
time.sleep(1)
array.append_set_dimension()
self.assertEqual(datime, array.updated_at)
datime = array.updated_at
time.sleep(1)
array.append_sampled_dimension(sampling_interval=0.1)
self.assertEqual(datime, array.updated_at)
datime = array.updated_at
time.sleep(1)
array.append_range_dimension(ticks=[0.1])
self.assertEqual(datime, array.updated_at)
# other properties
datime = array.updated_at
time.sleep(1)
array.polynom_coefficients = [1.1, 2.2]
self.assertEqual(datime, array.updated_at)
datime = array.updated_at
time.sleep(1)
array.expansion_origin = -1
self.assertEqual(datime, array.updated_at)
datime = array.updated_at
time.sleep(1)
array.label = "lbl"
self.assertEqual(datime, array.updated_at)
datime = array.updated_at
time.sleep(1)
array.unit = "Ms"
self.assertEqual(datime, array.updated_at)
def test_data_deletion(self):
data = [42.1337, 720.3, 190.0009]
array = self.block.create_data_array("del.test", "test", data=data)
np.testing.assert_almost_equal(data, array[:])
array[:] = None
np.testing.assert_almost_equal([np.nan]*len(data), array[:])
nda = len(self.block.data_arrays)
del self.block.data_arrays["del.test"]
assert len(self.block.data_arrays) == nda-1
assert "del.test" not in self.block.data_arrays
def test_single_value_retrieval(self):
assert self.array[1].shape == (1,)
self.array.expansion_origin = 0.3
assert self.array[1].shape == (1,)
self.array.expansion_origin = None
assert self.array[1].shape == (1,)
self.array.polynom_coefficients = (1.2, 3.4)
assert self.array[1].shape == (1,)
self.array.polynom_coefficients = None
assert self.array[1].shape == (1,)
self.array.expansion_origin = 0.9
self.array.polynom_coefficients = (1.2, 3.4)
assert self.array[1].shape == (1,)
self.array.expansion_origin = None
self.array.polynom_coefficients = None
assert self.array[1].shape == (1,)
|