File: test_data_frame.py

package info (click to toggle)
python-nixio 1.5.4%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,888 kB
  • sloc: python: 12,527; cpp: 832; makefile: 25
file content (254 lines) | stat: -rw-r--r-- 11,463 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import unittest

import nixio as nix
from .tmp import TempDir
import os
import time
import numpy as np
try:
    from collections.abc import OrderedDict
except ImportError:
    from collections import OrderedDict


class TestDataFrame(unittest.TestCase):

    def setUp(self):
        self.tmpdir = TempDir("dataframetest")
        self.testfilename = os.path.join(self.tmpdir.path, "dataframetest.nix")
        self.file = nix.File.open(self.testfilename, nix.FileMode.Overwrite)
        self.block = self.file.create_block("test block", "recordingsession")
        self.df1_dtype = OrderedDict([('name', np.int64), ('id', str), ('time', float),
                                      ('sig1', np.float64), ('sig2', np.int32)])
        self.df1_data = [(1, "alpha", 20.18, 5.0, 100),
                         (2, "beta", 20.09, 5.5, 101),
                         (2, "gamma", 20.05, 5.1, 100),
                         (1, "delta", 20.15, 5.3, 150),
                         (2, "epsilon", 20.23, 5.7, 200),
                         (2, "fi", 20.07, 5.2, 300),
                         (1, "zeta", 20.12, 5.1,  39),
                         (1, "eta", 20.27, 5.1, 600),
                         (2, "theta", 20.15, 5.6, 400),
                         (2, "iota", 20.08, 5.1, 200)]
        other_arr = np.arange(11101, 11200).reshape((33, 3))
        other_di = OrderedDict({'name': np.int64, 'id': int, 'time': float})
        self.df1 = self.block.create_data_frame("test df", "signal1",
                                                data=self.df1_data, col_dict=self.df1_dtype)
        self.df2 = self.block.create_data_frame("other df", "signal2",
                                                data=self.df1_data, col_dict=self.df1_dtype)
        self.df3 = self.block.create_data_frame("reference df", "signal3",
                                                data=other_arr,
                                                col_dict=other_di)
        self.dtype = self.df1._h5group.group["data"].dtype

    def tearDown(self):
        self.file.close()
        self.tmpdir.cleanup()

    def test_data_frame_eq(self):
        assert self.df1 == self.df1
        assert not self.df1 == self.df2
        assert self.df2 == self.df2
        assert self.df1 is not None
        assert self.df2 is not None

    def test_create_with_list(self):
        arr = [(1, 'a', 20.18, 5.1, 100), (2, 'b', 20.09, 5.5, 101),
               (2, 'c', 20.05, 5.1, 100)]
        namelist = np.array(['name', 'id', 'time', 'sig1', 'sig2'])
        dtlist = np.array([np.int64, str, float, np.float64, np.int32])
        df_li = self.block.create_data_frame("test_list", "make_of_list",
                                             data=arr, col_names=namelist,
                                             col_dtypes=dtlist)
        assert df_li.column_names == self.df1.column_names
        assert df_li.dtype == self.df1.dtype
        for i in df_li[:]:
            self.assertIsInstance(i['id'], str)
            self.assertIsInstance(i['sig2'], np.int32)

    def test_column_name_collision(self):
        arr = [(1, 'a', 20.18, 5.1, 100), (2, 'b', 20.09, 5.5, 101),
               (2, 'c', 20.05, 5.1, 100)]
        dtlist = np.array([np.int64, str, float, np.float64, np.int32])
        namelist = np.array(['name', 'name', 'name', 'name', 'name'])
        self.assertRaises(nix.exceptions.DuplicateColumnName,
                          self.block.create_data_frame,
                          'testerror', 'for_test',
                          col_names=namelist,
                          col_dtypes=dtlist, data=arr)

    def test_data_frame_type(self):
        assert self.df1.type == "signal1"
        self.df1.type = "test change"
        assert self.df1.type == "test change"

    def test_write_row(self):
        # test write single row
        row = ["1", 'abc', 3, 4.4556356242341, 5.1111111]
        assert list(self.df1[9]) == [2, 'iota', 20.08, 5.1, 200]
        self.df1.write_rows([row], [9])
        assert list(self.df1[9]) == [1, 'abc', 3., 4.4556356242341, 5]
        self.assertIsInstance(self.df1[9]['name'],  np.integer)
        self.assertIsInstance(self.df1[9]['sig2'],  np.int32)
        assert self.df1[9]['sig2'] == int(5)
        # test write multiple rows
        multi_rows = [[1775, '12355', 1777, 1778, 1779],
                      [1785, '12355', 1787, 1788, 1789]]
        self.df1.write_rows(multi_rows, [1, 2])
        assert list(self.df1[1]) == [1775, '12355', 1777, 1778, 1779]
        assert list(self.df1[2]) == [1785, '12355', 1787, 1788, 1789]

    def test_write_column(self):
        # write by name
        column1 = np.arange(10000, 10010)
        self.df1.write_column(column1, name='sig1')
        assert list(self.df1[:]['sig1']) == list(column1)
        # write by index
        column2 = np.arange(20000, 20010)
        self.df1.write_column(column2, index=4)

        assert list(self.df1[:]['sig2']) == list(column2)

    def test_read_row(self):
        df1_array = np.array(self.df1_data, dtype=list(self.df1_dtype.items()))
        # read single row
        assert self.df1.read_rows(0) == df1_array[0]
        # read multiple
        multi_rows = self.df1.read_rows(np.arange(4, 9))
        np.testing.assert_array_equal(multi_rows, df1_array[4:9])
        multi_rows = self.df1.read_rows([3, 6])
        np.testing.assert_array_equal(multi_rows, [df1_array[3], df1_array[6]])

    def test_read_column(self):
        # read single column by index
        single_idx_col = self.df1.read_columns(index=[1])
        data = np.array([row[1] for row in self.df1_data], dtype=nix.DataType.String)
        np.testing.assert_array_equal(single_idx_col, data)

        # read multiple columns by name
        multi_col = self.df1.read_columns(name=['sig1', 'sig2'])
        data = [(row[3], row[4]) for row in self.df1_data]
        assert len(multi_col) == 10
        for data_row, df_row in zip(data, multi_col):
            assert data_row == tuple(df_row)

        # read columns with slices
        slice_cols = self.df1.read_columns(name=['sig1', 'sig2'], slc=slice(0, 6))
        data = [(row[3], row[4]) for row in self.df1_data[:6]]
        assert len(slice_cols) == 6
        for data_row, df_row in zip(data, slice_cols):
            assert data_row == tuple(df_row)

        # read single column by name
        single_idx_col = self.df1.read_columns(name=["sig2"])
        data = np.array([100, 101, 100, 150, 200, 300, 39, 600, 400, 200], dtype=nix.DataType.Int32)
        np.testing.assert_array_equal(single_idx_col, data)

        # Read multiple columns where one is string
        slice_str_cols = self.df1.read_columns(name=['id', 'sig2'], slc=slice(3, 10))
        data = [(row[1], row[4]) for row in self.df1_data[3:10]]
        assert len(slice_str_cols) == 7
        for data_row, df_row in zip(data, slice_str_cols):
            assert data_row == tuple(df_row)

    def test_index_column_by_name(self):
        for colidx, colname in enumerate(self.df1_dtype.keys()):
            expdata = [row[colidx] for row in self.df1_data]
            assert all(self.df1[colname] == expdata)

    def test_read_cell(self):
        # read cell by position
        scell = self.df1.read_cell(position=[5, 3])
        assert scell == 5.2
        # read cell by row_idx + col_name
        crcell = self.df1.read_cell(col_name=['id'], row_idx=9)
        assert crcell == 'iota'
        # test error raise if only one param given
        self.assertRaises(ValueError, self.df1.read_cell, row_idx=10)
        self.assertRaises(ValueError, self.df1.read_cell, col_name='sig1')

    def test_write_cell(self):
        # write cell by position
        self.df1.write_cell(105, position=[8, 3])
        assert self.df1[8]['sig1'] == 105
        # write cell by rowid colname
        self.df1.write_cell('test', col_name='id', row_idx=3)
        assert self.df1[3]['id'] == 'test'
        # test error raise
        self.assertRaises(ValueError, self.df1.write_cell, 11, col_name='sig1')

    def test_append_column(self):
        col_data = np.arange(start=16000, stop=16010, step=1)
        self.df1.append_column(col_data, name='trial_col', datatype=int)
        assert self.df1.column_names == ('name', 'id', 'time',
                                         'sig1', 'sig2', 'trial_col')
        assert len(self.df1.dtype) == 6
        k = np.array(self.df1[0:10]["trial_col"], dtype=np.int64)
        np.testing.assert_almost_equal(k, col_data)
        # too short column
        sh_col = np.arange(start=16000, stop=16003, step=1)
        with self.assertRaises(ValueError):
            self.df1.append_column(sh_col, name='sh_col')
        # too long column
        long = np.arange(start=16000, stop=16500, step=1)
        with self.assertRaises(ValueError):
            self.df1.append_column(long, name='long')

    def test_append_rows(self):
        # append single row
        srow = (1, "test", 3, 4, 5)
        self.df1.append_rows([srow])
        assert self.df1[10] == np.array(srow, dtype=list(self.df1_dtype.items()))
        # append multi-rows
        mrows = [(1, "2", 3, 4, 5), (6, "testing", 8, 9, 10)]
        self.df1.append_rows(mrows)
        assert all(self.df1[-2:] == np.array(mrows, dtype=list(self.df1_dtype.items())))
        # append row with incorrect length
        errrow = [5, 6, 7, 8]
        self.assertRaises(ValueError, self.df1.append_rows, [errrow])

    def test_unit(self):
        assert self.df1.units is None
        self.df1.units = ["s", 'A', 'ms', 'Hz', 'mA']
        np.testing.assert_array_equal(self.df1.units,
                                      np.array(["s", 'A', 'ms', 'Hz', 'mA']))
        assert self.df2.units is None

    def test_df_shape(self):
        assert tuple(self.df1.df_shape) == (10, 5)
        # create df with incorrect dimension to see if Error is raised
        arr = np.arange(1000).reshape(10, 10, 10)
        with self.assertRaises(ValueError):
            self.block.create_data_frame('err', 'err',
                                         {'name': np.int64},
                                         data=arr)

    def test_data_type(self):
        assert self.df1.dtype[4] == np.int32
        assert self.df1.dtype[0] != self.df1.dtype[4]
        assert self.df1.dtype[2] == self.df1.dtype[3]

    def test_create_without_dtypes(self):
        data = np.array([("a", 1, 2.2), ("b", 2, 3.3), ("c", 3, 4.4)],
                        dtype=[('name', 'U10'), ("id", 'i4'), ('val', 'f4')])
        df = self.block.create_data_frame("without_name", "test", data=data)
        assert sorted(list(df.column_names)) == sorted(["name", "id", "val"])
        assert sorted(list(df["name"])) == ["a", "b", "c"]

    def test_timestamp_autoupdate(self):
        self.file.auto_update_timestamps = True
        df = self.block.create_data_frame("df.time", "test.time",
                                          col_dict=OrderedDict({"idx": int}))
        dftime = df.updated_at
        time.sleep(1)
        df.units = ("ly",)
        self.assertNotEqual(dftime, df.updated_at)

    def test_timestamp_noautoupdate(self):
        self.file.auto_update_timestamps = False
        df = self.block.create_data_frame("df.time", "test.time",
                                          col_dict=OrderedDict({"idx": int}))
        dftime = df.updated_at
        time.sleep(1)
        df.units = ("ly",)
        self.assertEqual(dftime, df.updated_at)