File: test_multi_tag.py

package info (click to toggle)
python-nixio 1.5.4%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,888 kB
  • sloc: python: 12,527; cpp: 832; makefile: 25
file content (973 lines) | stat: -rw-r--r-- 44,172 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
# -*- coding: utf-8 -*-
# Copyright © 2014, German Neuroinformatics Node (G-Node)
#
# All rights reserved.
#
# Redistribution and use in section and binary forms, with or without
# modification, are permitted under the terms of the BSD License. See
# LICENSE file in the root of the Project.
from nixio.exceptions.exceptions import InvalidSlice
import os
import time
import unittest
from collections import OrderedDict
import numpy as np
import nixio as nix
from nixio.exceptions import DuplicateName, UnsupportedLinkType
from .tmp import TempDir


class TestMultiTags(unittest.TestCase):

    def setUp(self):
        interval = 1.0
        ticks = [1.2, 2.3, 3.4, 4.5, 6.7]
        unit = "ms"

        self.tmpdir = TempDir("mtagtest")
        self.testfilename = os.path.join(self.tmpdir.path, "mtagtest.nix")
        self.file = nix.File.open(self.testfilename, nix.FileMode.Overwrite)
        self.block = self.file.create_block("test block", "recordingsession")

        self.my_array = self.block.create_data_array("my array", "test", nix.DataType.Int16, (0, 0))
        self.my_tag = self.block.create_multi_tag("my tag", "tag", self.my_array)

        self.your_array = self.block.create_data_array("your array", "test", nix.DataType.Int16, (0, 0))
        self.your_tag = self.block.create_multi_tag("your tag", "tag", self.your_array)

        self.data_array = self.block.create_data_array("featureTest", "test", nix.DataType.Double, (2, 10, 5))

        data = np.zeros((2, 10, 5))
        value = 0.
        for i in range(2):
            value = 0
            for j in range(10):
                for k in range(5):
                    value += 1
                    data[i, j, k] = value

        self.data_array[:, :, :] = data

        set_dim = self.data_array.append_set_dimension()
        set_dim.labels = ["label_a", "label_b"]
        sampled_dim = self.data_array.append_sampled_dimension(interval)
        sampled_dim.unit = unit
        range_dim = self.data_array.append_range_dimension(ticks)
        range_dim.unit = unit

        event_positions = np.zeros((2, 3))
        event_positions[0, 0] = 0.0
        event_positions[0, 1] = 3.0
        event_positions[0, 2] = 3.4

        event_positions[1, 0] = 0.0
        event_positions[1, 1] = 8.0
        event_positions[1, 2] = 2.3

        event_extents = np.zeros((2, 3))
        event_extents[0, 0] = 1.0
        event_extents[0, 1] = 6.0
        event_extents[0, 2] = 2.3

        event_extents[1, 0] = 1.0
        event_extents[1, 1] = 3.0
        event_extents[1, 2] = 2.0

        event_labels = ["event 1", "event 2"]
        dim_labels = ["dim 0", "dim 1", "dim 2"]

        self.event_array = self.block.create_data_array("positions", "test",
                                                        data=event_positions)

        self.extent_array = self.block.create_data_array("extents", "test",
                                                         data=event_extents)
        extent_set_dim = self.extent_array.append_set_dimension()
        extent_set_dim.labels = event_labels
        extent_set_dim = self.extent_array.append_set_dimension()
        extent_set_dim.labels = dim_labels

        self.feature_tag = self.block.create_multi_tag("feature_tag", "events",
                                                       self.event_array)
        self.feature_tag.extents = self.extent_array
        self.feature_tag.references.append(self.data_array)

    def tearDown(self):
        del self.file.blocks[self.block.id]
        self.file.close()
        self.tmpdir.cleanup()

    def test_multi_tag_new_constructor(self):
        pos = np.random.random_sample((2, 3))
        ext = np.random.random_sample((2, 3))
        mt = self.block.create_multi_tag("conv_test", "test", pos, ext)
        np.testing.assert_almost_equal(pos, mt.positions[:])
        np.testing.assert_almost_equal(ext, mt.extents[:])
        # try reset positions and ext
        assert mt.positions.name == "conv_test-positions"
        assert mt.positions.type == "test-positions"
        assert mt.extents.name == "conv_test-extents"
        assert mt.extents.type == "test-extents"
        # test positions extents deleted if multitag creation failed
        pos = None
        ext = np.random.random_sample((2, 3))
        self.assertRaises(ValueError, self.block.create_multi_tag,
                          "err_test", "test", pos, ext)
        self.block.create_data_array("dup_test-"
                                     "positions", "test", data=[0])
        pos = np.random.random_sample((2, 3))
        ext = np.random.random_sample((2, 3))
        self.assertRaises(DuplicateName, self.block.create_multi_tag,
                          "dup_test", "test", pos, ext)
        del self.block.data_arrays["dup_test-positions"]
        self.block.create_data_array("dup_test2-"
                                     "extents", "test", data=[0])
        pos = np.random.random_sample((2, 3))
        ext = np.random.random_sample((2, 3))
        self.assertRaises(DuplicateName, self.block.create_multi_tag,
                          "dup_test2", "test", pos, ext)
        pos = np.random.random_sample((2, 3))
        ext = [None, None]
        self.assertRaises(TypeError, self.block.create_multi_tag,
                          "dup_test3", "test", pos, ext)

    def test_multi_tag_flex(self):
        pos1d = self.block.create_data_array("pos1", "pos", data=[[0], [1]])
        pos1d1d = self.block.create_data_array("pos1d1d", "pos", data=[0, 1])
        pos2d = self.block.create_data_array("pos2", "pos", data=[[0, 0], [1, 1]])
        pos3d = self.block.create_data_array("pos3", "pos", data=[[0, 1, 2], [1, 2, 3]])
        ext1d = self.block.create_data_array('ext1', 'ext', data=[[1], [1]])
        ext1d1d = self.block.create_data_array('ext1d1d', 'ext', data=[1, 1])
        ext2d = self.block.create_data_array('ext2', 'ext', data=[[1, 2], [0, 2]])
        ext3d = self.block.create_data_array('ext3', 'ext', data=[[1, 1, 1], [1, 1, 1]])
        mt1d = self.block.create_multi_tag("mt1d", "mt", pos1d)
        mt1d.extents = ext1d
        mt1d1d = self.block.create_multi_tag("mt1d1d", "mt", pos1d1d)
        mt1d1d.extents = ext1d1d
        mt2d = self.block.create_multi_tag("mt2d", "mt", pos2d)
        mt2d.extents = ext2d
        mt3d = self.block.create_multi_tag("mt3d", "mt", pos3d)
        mt3d.extents = ext3d
        # create some references
        da1d = self.block.create_data_array('ref1d', 'ref', data=np.arange(10))
        da1d.append_sampled_dimension(1., label="time", unit="s")
        da2d = self.block.create_data_array('ref2d', 'ref', data=np.arange(100).reshape((10, 10)))
        da2d.append_sampled_dimension(1., label="time", unit="s")
        da2d.append_set_dimension()
        da3d = self.block.create_data_array('ref3d', 'ref', data=np.arange(1000).reshape((10, 10, 10)))
        da3d.append_sampled_dimension(1., label="time", unit="s")
        da3d.append_set_dimension()
        da3d.append_set_dimension()
        mt1d.references.extend([da1d, da2d, da3d])
        mt1d1d.references.extend([da1d, da2d, da3d])
        mt2d.references.extend([da1d, da2d, da3d])
        mt3d.references.extend([da1d, da2d, da3d])
        np.testing.assert_almost_equal(mt1d.tagged_data(0, 0)[:], da1d[0:1])
        np.testing.assert_almost_equal(mt1d.tagged_data(0, 1)[:], da2d[0:1, :])
        np.testing.assert_almost_equal(mt1d.tagged_data(0, 2)[:], da3d[0:1, :, :])
        np.testing.assert_almost_equal(mt1d1d.tagged_data(0, 0)[:], da1d[0:1])
        np.testing.assert_almost_equal(mt1d1d.tagged_data(0, 1)[:], da2d[0:1, :])
        np.testing.assert_almost_equal(mt1d1d.tagged_data(0, 2)[:], da3d[0:1, :, :])
        np.testing.assert_almost_equal(mt2d.tagged_data(0, 0)[:], da1d[0:1])
        np.testing.assert_almost_equal(mt2d.tagged_data(0, 1)[:], da2d[0:1, 0:2])
        np.testing.assert_almost_equal(mt2d.tagged_data(0, 2)[:], da3d[0:1, 0:2, :])
        np.testing.assert_almost_equal(mt3d.tagged_data(1, 0)[:], da1d[1:2])
        np.testing.assert_almost_equal(mt3d.tagged_data(1, 1)[:], da2d[1:2, 2:3])
        np.testing.assert_almost_equal(mt3d.tagged_data(1, 2)[:], da3d[1:2, 2:3, 3:4])

    def test_multi_tag_eq(self):
        assert self.my_tag == self.my_tag
        assert not self.my_tag == self.your_tag
        assert self.my_tag is not None

    def test_multi_tag_id(self):
        assert self.my_tag.id is not None

    def test_multi_tag_name(self):
        assert self.my_tag.name is not None

    def test_multi_tag_type(self):
        def set_none():
            self.my_tag.type = None

        assert self.my_tag.type is not None
        self.assertRaises(Exception, set_none)

        self.my_tag.type = "foo type"
        assert self.my_tag.type == "foo type"

    def test_multi_tag_definition(self):
        assert self.my_tag.definition is None

        self.my_tag.definition = "definition"
        assert self.my_tag.definition == "definition"

        self.my_tag.definition = None
        assert self.my_tag.definition is None

    def test_multi_tag_timestamps(self):
        created_at = self.my_tag.created_at
        assert created_at > 0

        updated_at = self.my_tag.updated_at
        assert updated_at > 0

        self.my_tag.force_created_at(1403530068)
        assert self.my_tag.created_at == 1403530068

    def test_multi_tag_units(self):
        assert self.my_tag.units == ()

        self.my_tag.units = ["mV", "ms"]
        assert self.my_tag.units == ("mV", "ms")

        self.my_tag.units = []  # () also works!
        assert self.my_tag.units == ()

    def test_multi_tag_positions(self):
        def set_none():
            self.my_tag.positions = None

        assert self.my_tag.positions is not None
        old_positions = self.my_tag.positions

        new_positions = self.block.create_data_array("pos", "position",
                                                     nix.DataType.Int16,
                                                     (0, 0))
        self.my_tag.positions = new_positions
        assert self.my_tag.positions == new_positions

        self.assertRaises(TypeError, set_none)

        self.my_tag.positions = old_positions
        assert self.my_tag.positions == old_positions

    def test_multi_tag_extents(self):
        assert self.my_tag.extents is None

        new_extents = self.block.create_data_array("ext", "extent",
                                                   nix.DataType.Int16, (0, 0))
        self.my_tag.extents = new_extents
        assert self.my_tag.extents == new_extents

        self.my_tag.extents = None
        assert self.my_tag.extents is None

    def test_multi_tag_references(self):
        assert len(self.my_tag.references) == 0

        self.assertRaises(TypeError, self.my_tag.references.append, 100)

        reference1 = self.block.create_data_array("reference1", "stimuli",
                                                  nix.DataType.Int16, (0,))
        reference2 = self.block.create_data_array("reference2", "stimuli",
                                                  nix.DataType.Int16, (0,))

        self.my_tag.references.append(reference1)
        self.my_tag.references.append(reference2)

        assert len(self.my_tag.references) == 2
        assert reference1 in self.my_tag.references
        assert reference2 in self.my_tag.references

        # id and name access
        assert reference1 == self.my_tag.references[reference1.name]
        assert reference1 == self.my_tag.references[reference1.id]
        assert reference2 == self.my_tag.references[reference2.name]
        assert reference2 == self.my_tag.references[reference2.id]

        assert reference1.name in self.my_tag.references
        assert reference2.name in self.my_tag.references
        assert reference1.id in self.my_tag.references
        assert reference2.id in self.my_tag.references

        del self.my_tag.references[reference2]
        assert self.my_tag.references[0] == reference1

        del self.my_tag.references[reference1]
        assert len(self.my_tag.references) == 0

    def test_multi_tag_features(self):
        assert len(self.my_tag.features) == 0

        data_array = self.block.create_data_array("feature", "stimuli",
                                                  nix.DataType.Int16, (0,))
        feature = self.my_tag.create_feature(data_array,
                                             nix.LinkType.Untagged)
        assert len(self.my_tag.features) == 1

        assert feature in self.my_tag.features
        assert feature.id in self.my_tag.features
        assert "notexist" not in self.my_tag.features

        assert feature.id == self.my_tag.features[0].id
        assert feature.id == self.my_tag.features[-1].id

        # id and name access
        assert feature.id == self.my_tag.features[feature.id].id
        assert feature.id == self.my_tag.features[data_array.id].id
        assert feature.id == self.my_tag.features[data_array.name].id
        assert data_array == self.my_tag.features[data_array.id].data
        assert data_array == self.my_tag.features[data_array.name].data

        assert data_array.id in self.my_tag.features
        assert data_array.name in self.my_tag.features

        data_frame = self.block.create_data_frame(
            "dataframe feature", "test",
            col_dict=OrderedDict([("number", nix.DataType.Float)]),
            data=[(10.,)]
        )
        df_feature = self.my_tag.create_feature(data_frame, nix.LinkType.Untagged)

        assert len(self.my_tag.features) == 2

        assert df_feature in self.my_tag.features
        assert df_feature.id in self.my_tag.features

        assert df_feature.id == self.my_tag.features[1].id
        assert df_feature.id == self.my_tag.features[-1].id

        # id and name access
        assert df_feature.id == self.my_tag.features[df_feature.id].id
        assert df_feature.id == self.my_tag.features[data_frame.id].id
        assert df_feature.id == self.my_tag.features[data_frame.name].id
        assert data_frame == self.my_tag.features[data_frame.id].data
        assert data_frame == self.my_tag.features[data_frame.name].data

        assert data_frame.id in self.my_tag.features
        assert data_frame.name in self.my_tag.features

        assert isinstance(self.my_tag.features[0].data, nix.DataArray)
        assert isinstance(self.my_tag.features[1].data, nix.DataFrame)

        del self.my_tag.features[0]
        assert len(self.my_tag.features) == 1
        del self.my_tag.features[0]
        assert len(self.my_tag.features) == 0

    def test_multi_tag_tagged_data(self):
        sample_iv = 0.001
        x_data = np.arange(0, 10, sample_iv)
        y_data = np.sin(2 * np.pi * x_data)

        block = self.block
        da = block.create_data_array("sin", "data", data=y_data)
        da.unit = 'dB'
        dim = da.append_sampled_dimension(sample_iv)
        dim.unit = 's'

        pos = block.create_data_array('pos1', 'positions', data=np.array([0.]).reshape(1, 1))
        pos.append_set_dimension()
        pos.append_set_dimension()
        pos.unit = 'ms'
        ext = block.create_data_array('ext1', 'extents', data=np.array([2000.]).reshape(1, 1))
        ext.append_set_dimension()
        ext.append_set_dimension()
        ext.unit = 'ms'

        mtag = block.create_multi_tag("sin1", "tag", pos)
        mtag.extents = ext
        mtag.units = ['ms']
        mtag.references.append(da)

        assert mtag.tagged_data(0, 0).shape == (2000,)
        assert np.array_equal(y_data[:2000], mtag.tagged_data(0, 0)[:])
        assert mtag.tagged_data(0, 0, stop_rule=nix.SliceMode.Inclusive).shape == (2001,)
        assert np.array_equal(y_data[:2001], mtag.tagged_data(0, 0, stop_rule=nix.SliceMode.Inclusive)[:])

        # get by name
        data = mtag.tagged_data(0, da.name)
        assert data.shape == (2000,)
        assert np.array_equal(y_data[:2000], data[:])

        # get by id
        data = mtag.tagged_data(0, da.id)
        assert data.shape == (2000,)
        assert np.array_equal(y_data[:2000], data[:])

        # multi dimensional data
        # position 1 should fail since the position in the third dimension does not point to a valid point
        # positon 2 and 3 should deliver valid DataViews
        # same for segment 0 should again return an invalid DataView because of dimension 3
        sample_iv = 1.0
        ticks = [1.2, 2.3, 3.4, 4.5, 6.7]
        unit = "ms"
        pos = self.block.create_data_array("pos", "test", data=[[1, 1, 1], [1, 1, 1.2], [1, 1, 1.2]])
        pos.append_set_dimension()
        pos.append_set_dimension()
        ext = self.block.create_data_array("ext", "test", data=[[1, 5, 2], [1, 5, 2], [0, 4, 1]])
        ext.append_set_dimension()
        ext.append_set_dimension()
        units = ["none", "ms", "ms"]
        data = np.random.random_sample((3, 10, 5))
        da = self.block.create_data_array("dimtest", "test", data=data)
        setdim = da.append_set_dimension()
        setdim.labels = ["Label A", "Label B", "Label D"]
        samdim = da.append_sampled_dimension(sample_iv)
        samdim.unit = unit
        randim = da.append_range_dimension(ticks)
        randim.unit = unit

        postag = self.block.create_multi_tag("postag", "event", pos)
        postag.references.append(da)
        postag.units = units

        segtag = self.block.create_multi_tag("region", "segment", pos)
        segtag.references.append(da)
        segtag.extents = ext
        segtag.units = units

        posdata = postag.tagged_data(0, 0)
        assert not posdata.valid
        assert "InvalidSlice error" in posdata.debug_message
        assert posdata.data_extent is None
        assert posdata.shape is None
        with self.assertRaises(InvalidSlice):
            posdata._write_data(np.random.randn(1))
        assert sum(posdata[:].shape) == 0

        posdata = postag.tagged_data(1, 0)
        assert posdata.valid
        assert posdata.debug_message == ""
        assert len(posdata.shape) == 3
        assert posdata.shape == (1, 1, 1)
        assert np.isclose(posdata[0, 0, 0], data[1, 1, 0])

        posdata = postag.tagged_data(2, 0)
        assert len(posdata.shape) == 3
        assert posdata.shape == (1, 1, 1)
        assert np.isclose(posdata[0, 0, 0], data[1, 1, 0])

        segdata = segtag.tagged_data(1, 0)
        assert len(segdata.shape) == 3
        assert segdata.shape == (1, 5, 2)

        segdata = segtag.tagged_data(2, 0)
        assert len(segdata.shape) == 3
        assert segdata.shape == (1, 4, 1)

        # retrieve all positions for all references
        for ridx, _ in enumerate(mtag.references):
            for pidx, _ in enumerate(mtag.positions):
                mtag.tagged_data(pidx, ridx)

        wrong_pos = self.block.create_data_array("incorpos", "test", data=[[1, 1, 1], [100, 1, 1]])
        wrong_pos.append_set_dimension()
        wrong_pos.append_set_dimension()
        postag.positions = wrong_pos
        self.assertRaises(IndexError, postag.tagged_data, 1, 1)
        wrong_ext = self.block.create_data_array("incorext", "test", data=[[1, 500, 2], [0, 4, 1]])
        wrong_ext.append_set_dimension()
        wrong_ext.append_set_dimension()
        segtag.extents = wrong_ext
        self.assertRaises(IndexError, segtag.tagged_data, 0, 1)

    def test_multi_tag_data_coefficients(self):
        sample_iv = 0.001
        x_data = np.arange(0, 10, sample_iv)
        y_data = np.sin(2 * np.pi * x_data)

        block = self.block
        da = block.create_data_array("sin", "data", data=y_data)
        da.unit = 'V'
        da.polynom_coefficients = (10, 0.3)
        dim = da.append_sampled_dimension(sample_iv)
        dim.unit = 's'

        pos = block.create_data_array('pos1', 'positions', data=np.array([0.]).reshape(1, 1))
        pos.append_set_dimension()
        pos.append_set_dimension()
        pos.unit = 'ms'
        ext = block.create_data_array('ext1', 'extents', data=np.array([2000.]).reshape(1, 1))
        ext.append_set_dimension()
        ext.append_set_dimension()
        ext.unit = 'ms'

        mtag = block.create_multi_tag("sin1", "tag", pos)
        mtag.extents = ext
        mtag.units = ['ms']
        mtag.references.append(da)

        assert np.array_equal(da[:2000], mtag.tagged_data(0, 0)[:])

        da.expansion_origin = 0.89
        assert np.array_equal(da[:2000], mtag.tagged_data(0, 0)[:])

    def test_multi_tag_tagged_data_1d(self):
        # MultiTags to vectors behave a bit differently
        # Testing separately
        oneddata = self.block.create_data_array("1dda", "data",
                                                data=list(range(100)))
        oneddata.append_sampled_dimension(0.1)
        onedpos = self.block.create_data_array("1dpos", "positions",
                                               data=[1, 9, 9.5])
        onedmtag = self.block.create_multi_tag("2dmt", "mtag",
                                               positions=onedpos)
        onedmtag.references.append(oneddata)
        for pidx, _ in enumerate(onedmtag.positions):
            onedmtag.tagged_data(pidx, 0)

    def test_multi_tag_feature_data(self):
        index_data = self.block.create_data_array("indexed feature data", "test",
                                                  dtype=nix.DataType.Double, shape=(10, 10))
        dim1 = index_data.append_sampled_dimension(1.0)
        dim1.unit = "ms"
        dim2 = index_data.append_sampled_dimension(1.0)
        dim2.unit = "ms"

        data1 = np.zeros((10, 10))
        value = 0.0
        total = 0.0
        for i in range(10):
            value = 100 * i
            for j in range(10):
                value += 1
                data1[i, j] = value
                total += data1[i, j]

        index_data[:, :] = data1

        tagged_data = self.block.create_data_array("tagged feature data", "test",
                                                   dtype=nix.DataType.Double, shape=(10, 20, 10))
        dim1 = tagged_data.append_sampled_dimension(1.0)
        dim1.unit = "ms"
        dim2 = tagged_data.append_sampled_dimension(1.0)
        dim2.unit = "ms"
        dim3 = tagged_data.append_sampled_dimension(1.0)
        dim3.unit = "ms"

        data2 = np.zeros((10, 20, 10))
        for i in range(10):
            value = 100 * i
            for j in range(20):
                for k in range(10):
                    value += 1
                    data2[i, j, k] = value

        tagged_data[:, :, :] = data2

        self.feature_tag.create_feature(index_data, nix.LinkType.Indexed)
        self.feature_tag.create_feature(tagged_data, nix.LinkType.Tagged)
        self.feature_tag.create_feature(index_data, nix.LinkType.Untagged)

        # preparations done, actually test
        assert len(self.feature_tag.features) == 3

        # indexed feature
        feat_data = self.feature_tag.feature_data(0, 0)
        assert len(feat_data.shape) == 2
        assert feat_data.size == 10
        assert np.sum(feat_data) == 55

        # disabled, don't understand how it could ever have worked,
        # there are only 3 positions
        data_view = self.feature_tag.feature_data(9, 0)
        assert np.sum(data_view[:, :]) == 9055

        # untagged feature
        data_view = self.feature_tag.feature_data(0, 2)
        assert data_view.size == 100

        data_view = self.feature_tag.feature_data(0, 2)
        assert data_view.size == 100
        assert np.sum(data_view) == total

        # tagged feature
        data_view = self.feature_tag.feature_data(0, 1)
        assert len(data_view.shape) == 3

        data_view = self.feature_tag.feature_data(1, 1)
        assert len(data_view.shape) == 3

        # === retrieve by name ===
        # indexed feature
        feat_data = self.feature_tag.feature_data(0, index_data.name)
        assert len(feat_data.shape) == 2
        assert feat_data.size == 10
        assert np.sum(feat_data) == 55

        # disabled, there are only 3 positions
        data_view = self.feature_tag.feature_data(9, index_data.name)
        assert np.sum(data_view[:, :]) == 9055

        # tagged feature
        data_view = self.feature_tag.feature_data(0, tagged_data.name)
        assert len(data_view.shape) == 3

        data_view = self.feature_tag.feature_data(1, tagged_data.name)
        assert len(data_view.shape) == 3

        def out_of_bounds():
            self.feature_tag.feature_data(2, 1)

        self.assertRaises(IndexError, out_of_bounds)

    def test_timestamp_autoupdate(self):
        pos = self.block.create_data_array("positions.time", "test.time",
                                           nix.DataType.Int16, (0, 0))
        mtag = self.block.create_multi_tag("mtag.time", "test.time", pos)

        mtagtime = mtag.updated_at
        time.sleep(1)  # wait for time to change
        mtag.positions = self.block.create_data_array("pos2.time",
                                                      "test.time",
                                                      nix.DataType.Int8, (0,))
        self.assertNotEqual(mtag.updated_at, mtagtime)

        mtagtime = mtag.updated_at
        time.sleep(1)  # wait for time to change
        mtag.extents = self.block.create_data_array("extents.time",
                                                    "test.time",
                                                    nix.DataType.Int8, (0,))
        self.assertNotEqual(mtag.updated_at, mtagtime)

    def test_timestamp_noautoupdate(self):
        self.file.auto_update_timestamps = False
        pos = self.block.create_data_array("positions.time", "test.time",
                                           nix.DataType.Int16, (0, 0))
        mtag = self.block.create_multi_tag("mtag.time", "test.time", pos)

        mtagtime = mtag.updated_at
        time.sleep(1)  # wait for time to change
        mtag.positions = self.block.create_data_array("pos2.time",
                                                      "test.time",
                                                      nix.DataType.Int8, (0,))
        self.assertEqual(mtag.updated_at, mtagtime)

        mtagtime = mtag.updated_at
        time.sleep(1)  # wait for time to change
        mtag.extents = self.block.create_data_array("extents.time",
                                                    "test.time",
                                                    nix.DataType.Int8, (0,))
        self.assertEqual(mtag.updated_at, mtagtime)

    def test_multi_tag_feature_dataframe(self):
        numberdata = np.random.random(20)
        number_feat = self.block.create_data_frame(
            "number feature", "test",
            col_dict=OrderedDict([("number", nix.DataType.Float)]),
            data=[(n,) for n in numberdata]
        )
        column_descriptions = OrderedDict([("name", nix.DataType.String),
                                           ("duration", nix.DataType.Double)])
        values = [("One", 0.1), ("Two", 0.2), ("Three", 0.3), ("Four", 0.4),
                  ("Five", 0.5), ("Six", 0.6), ("Seven", 0.7), ("Eight", 0.8),
                  ("Nine", 0.9), ("Ten", 1.0)]
        ramp_feat = self.block.create_data_frame("ramp feature", "test",
                                                 col_dict=column_descriptions,
                                                 data=values)
        ramp_feat.label = "voltage"
        ramp_feat.units = (None, "s")

        pos_tag = self.block.create_multi_tag("feature test", "test", [4, 7, 8])

        with self.assertRaises(UnsupportedLinkType):
            pos_tag.create_feature(number_feat, nix.LinkType.Tagged)
        pos_tag.create_feature(number_feat, nix.LinkType.Untagged)
        pos_tag.create_feature(number_feat, nix.LinkType.Indexed)
        with self.assertRaises(UnsupportedLinkType):
            pos_tag.create_feature(ramp_feat, nix.LinkType.Tagged)
        pos_tag.create_feature(ramp_feat, nix.LinkType.Untagged)
        pos_tag.create_feature(ramp_feat, nix.LinkType.Indexed)
        assert len(pos_tag.features) == 4

        for idx, _ in enumerate(pos_tag.positions):
            data1 = pos_tag.feature_data(idx, 0)
            data2 = pos_tag.feature_data(idx, 1)
            data3 = pos_tag.feature_data(idx, 2)
            data4 = pos_tag.feature_data(idx, 3)

            # check expected data
            assert np.all(data1[:] == number_feat[:])
            assert np.all(data2[:] == number_feat[idx])
            assert np.all(data3[:] == ramp_feat[:])
            assert np.all(data4[:] == ramp_feat[idx])

        # add extents (should have no effect)
        extents = self.block.create_data_array("feature test.extents", "test",
                                               data=[2, 2, 5])
        pos_tag.extents = extents
        for idx, _ in enumerate(pos_tag.positions):
            data1 = pos_tag.feature_data(idx, 0)
            data2 = pos_tag.feature_data(idx, 1)
            data3 = pos_tag.feature_data(idx, 2)
            data4 = pos_tag.feature_data(idx, 3)

            # check expected data
            assert np.all(data1[:] == number_feat[:])
            assert np.all(data2[:] == number_feat[idx])
            assert np.all(data3[:] == ramp_feat[:])
            assert np.all(data4[:] == ramp_feat[idx])

    def test_multi_tag_tagged_data_slice_mode(self):
        data = np.random.random_sample((3, 100, 10))
        da = self.block.create_data_array("signals", "test.signals", data=data)
        da.unit = "mV"
        da.append_set_dimension(labels=["A", "B", "C"])
        sample_iv = 0.001
        timedim = da.append_sampled_dimension(sampling_interval=sample_iv)
        timedim.unit = "s"
        posdim = da.append_range_dimension([1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9])
        posdim.unit = "mm"

        # exact_tag has a pos+ext that is exactly equal to a dimension tick
        exact_tag = self.block.create_multi_tag("tickpoint", "test.tag",
                                                positions=[(0, 0.03, 0.0011), (1, 0.05, 0.0015)],
                                                extents=[(1, 0.02, 0.0005), (1, 0.04, 0.0003)])
        exact_tag.units = ["none", "s", "m"]

        exact_tag.references.append(da)

        # FIRST TAG
        # dim2: [0.001, 0.002, ..., 0.03, 0.031, ..., 0.049, 0.05, 0.051, ...]
        #                           ^ pos [30]               ^ pos+ext [50]
        # Inclusive mode includes index 50, exclusive does not
        #
        # dim3: [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9]
        #             ^ pos [1]                ^ pos+ext [6]
        # Inclusive mode includes index 6, exclusive does not

        slice_default = exact_tag.tagged_data(0, 0)
        assert slice_default.shape == (1, 20, 5)
        np.testing.assert_array_equal(slice_default, da[0:1, 30:50, 1:6])  # default exclusive

        slice_inclusive = exact_tag.tagged_data(0, 0, stop_rule=nix.SliceMode.Inclusive)
        assert slice_inclusive.shape == (2, 21, 6)
        np.testing.assert_array_equal(slice_inclusive, da[0:2, 30:51, 1:7])

        slice_exclusive = exact_tag.tagged_data(0, 0, stop_rule=nix.SliceMode.Exclusive)
        assert slice_exclusive.shape == (1, 20, 5)
        np.testing.assert_array_equal(slice_exclusive, da[0:1, 30:50, 1:6])

        # SECOND TAG
        # dim2: [0.001, 0.002, ..., 0.05, 0.051, ..., 0.089, 0.09, 0.091, ...]
        #                           ^ pos [50]               ^ pos+ext [90]
        # Inclusive mode includes index 90, exclusive does not
        #
        # dim3: [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9]
        #                                 ^ pos [5]        ^ pos+ext [8]
        # Inclusive mode includes index 8, exclusive does not

        slice_default = exact_tag.tagged_data(1, 0)
        assert slice_default.shape == (1, 40, 3)
        np.testing.assert_array_equal(slice_default, da[1:2, 50:90, 5:8])  # default exclusive

        slice_inclusive = exact_tag.tagged_data(1, 0, stop_rule=nix.SliceMode.Inclusive)
        assert slice_inclusive.shape == (2, 41, 4)
        np.testing.assert_array_equal(slice_inclusive, da[1:3, 50:91, 5:9])

        slice_exclusive = exact_tag.tagged_data(1, 0, stop_rule=nix.SliceMode.Exclusive)
        assert slice_exclusive.shape == (1, 40, 3)
        np.testing.assert_array_equal(slice_exclusive, da[1:2, 50:90, 5:8])

        # midpoint_tag has a pos+ext that falls between dimension ticks
        midpoint_tag = self.block.create_multi_tag("midpoint", "test.tag",
                                                   positions=([0, 0.03, 0.0011], [1, 0.05, 0.0015]),
                                                   extents=([1, 0.0301, 0.00051], [1, 0.0401, 0.00031]))  # .1 offset
        midpoint_tag.units = ["none", "s", "m"]

        # FIRST TAG
        # dim2: [0.001, 0.002, ..., 0.03, 0.031, ..., 0.059, 0.06,|   0.061, ...]
        #                           ^ pos [30]                    ^ pos+ext [60] + 0.1
        # Both inclusive and exclusive include index 60
        #
        # dim3: [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,|   1.7, 1.8, 1.9]
        #             ^ pos [1]                    ^ pos+ext [6] + 0.1
        # Both inclusive and exclusive include index 6

        midpoint_tag.references.append(da)

        # all slicing is inclusive since the pos+ext points are between ticks
        slice_default = midpoint_tag.tagged_data(0, 0)
        assert slice_default.shape == (1, 31, 6)
        np.testing.assert_array_equal(slice_default, da[0:1, 30:61, 1:7])

        slice_inclusive = midpoint_tag.tagged_data(0, 0, stop_rule=nix.SliceMode.Inclusive)
        assert slice_inclusive.shape == (2, 31, 6)
        np.testing.assert_array_equal(slice_inclusive, da[0:2, 30:61, 1:7])

        slice_exclusive = midpoint_tag.tagged_data(0, 0, stop_rule=nix.SliceMode.Exclusive)
        assert slice_exclusive.shape == (1, 31, 6)
        np.testing.assert_array_equal(slice_exclusive, da[0:1, 30:61, 1:7])

        # SECOND TAG
        # dim2: [0.001, 0.002, ..., 0.05, 0.051, ..., 0.089, 0.09,|    0.091, ...]
        #                           ^ pos [50]                    ^ pos+ext [90] + 0.1
        # Both inclusive and exclusive include index 90
        #
        # dim3: [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,|    1.9]
        #                                 ^ pos [5]          ^ pos+ext [8] + 0.1
        # Both inclusive and exclusive include index 8

        midpoint_tag.references.append(da)

        # all slicing is inclusive since the pos+ext points are between ticks
        slice_default = midpoint_tag.tagged_data(1, 0)
        assert slice_default.shape == (1, 41, 4)
        np.testing.assert_array_equal(slice_default, da[1:2, 50:91, 5:9])

        slice_inclusive = midpoint_tag.tagged_data(1, 0, stop_rule=nix.SliceMode.Inclusive)
        assert slice_inclusive.shape == (2, 41, 4)
        np.testing.assert_array_equal(slice_inclusive, da[1:3, 50:91, 5:9])

        slice_exclusive = midpoint_tag.tagged_data(1, 0, stop_rule=nix.SliceMode.Exclusive)
        assert slice_exclusive.shape == (1, 41, 4)
        np.testing.assert_array_equal(slice_exclusive, da[1:2, 50:91, 5:9])

    def test_tagged_set_dim(self):
        """
        Simple test where the slice can be calculated directly from the position and extent and compared to the original
        data.
        Set dimension slicing.
        """
        nsignals = 10
        data = np.random.random_sample((nsignals, 100))
        da = self.block.create_data_array("data", "data", data=data)
        da.append_set_dimension()
        da.append_sampled_dimension(sampling_interval=1).unit = "s"

        posarray = self.block.create_data_array("mtag.positions", "test.positions", dtype=float, shape=(1,))
        extarray = self.block.create_data_array("mtag.extents", "test.extents", dtype=float, shape=(1,))
        mtag = self.block.create_multi_tag("mtag", "simple", positions=posarray)
        mtag.extents = extarray

        mtag.references.append(da)

        for pos in range(nsignals):
            for ext in range(2, nsignals-pos):
                mtag.positions[:] = [pos]
                mtag.extents[:] = [ext]
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0), da[pos:pos+ext])
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Exclusive), da[pos:pos+ext])
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Inclusive), da[pos:pos+ext+1])

                # +0.1 should round up (ceil) the start position
                # +0.1 * 2 should round down (floor) the stop position and works the same for both inclusive and
                # exclusive
                mtag.positions[:] = [pos+0.1]
                mtag.extents[:] = [ext+0.1]
                start = pos+1
                stop = pos+ext+1
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0), da[start:stop])
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Exclusive), da[start:stop])
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Inclusive), da[start:stop])

                if pos+ext+2 < len(da):
                    # +0.9 should round up (ceil) the start position
                    # +0.9 * 2 should round down (floor) the stop position and works the same for both inclusive and
                    # exclusive
                    mtag.positions[:] = [pos+0.9]
                    mtag.extents[:] = [ext+0.9]
                    start = pos+1
                    stop = pos+ext+2
                    np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0), da[start:stop])
                    np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Exclusive),
                                                         da[start:stop])
                    np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Inclusive),
                                                         da[start:stop])

    def test_tagged_range_dim(self):
        """
        Simple test where the slice can be calculated directly from the position and extent and compared to the original
        data.
        Range dimension slicing.
        """
        nticks = 10
        data = np.random.random_sample((nticks, 100))
        da = self.block.create_data_array("data", "data", data=data)
        da.append_range_dimension(ticks=range(nticks))
        da.append_sampled_dimension(sampling_interval=1).unit = "s"

        posarray = self.block.create_data_array("mtag.positions", "test.positions", dtype=float, shape=(1,))
        extarray = self.block.create_data_array("mtag.extents", "test.extents", dtype=float, shape=(1,))
        mtag = self.block.create_multi_tag("mtag", "simple", positions=posarray)
        mtag.extents = extarray

        mtag.references.append(da)

        for pos in range(nticks):
            for ext in range(2, nticks-pos):
                mtag.positions[:] = [pos]
                mtag.extents[:] = [ext]
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0), da[pos:pos+ext])
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Exclusive), da[pos:pos+ext])
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Inclusive), da[pos:pos+ext+1])

                # +0.1 should round up (ceil) the start position
                # +0.1 * 2 should round down (floor) the stop position and works the same for both inclusive and
                # exclusive
                mtag.positions[:] = [pos+0.1]
                mtag.extents[:] = [ext+0.1]
                start = pos+1
                stop = pos+ext+1
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0), da[start:stop])
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Exclusive), da[start:stop])
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Inclusive), da[start:stop])

                if pos+ext+2 < len(da):
                    # +0.9 should round up (ceil) the start position
                    # +0.9 * 2 should round down (floor) the stop position and works the same for both inclusive and
                    # exclusive
                    mtag.positions[:] = [pos+0.9]
                    mtag.extents[:] = [ext+0.9]
                    start = pos+1
                    stop = pos+ext+2
                    np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0), da[start:stop])
                    np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Exclusive),
                                                         da[start:stop])
                    np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Inclusive),
                                                         da[start:stop])

    def test_tagged_sampled_dim(self):
        """
        Simple test where the slice can be calculated directly from the position and extent and compared to the original
        data.
        Sampled dimension slicing.
        """
        nticks = 10
        data = np.random.random_sample((nticks, 100))
        da = self.block.create_data_array("data", "data", data=data)
        da.append_sampled_dimension(sampling_interval=1).unit = "V"
        da.append_sampled_dimension(sampling_interval=1).unit = "s"

        posarray = self.block.create_data_array("mtag.positions", "test.positions", dtype=float, shape=(1,))
        extarray = self.block.create_data_array("mtag.extents", "test.extents", dtype=float, shape=(1,))
        mtag = self.block.create_multi_tag("mtag", "simple", positions=posarray)
        mtag.extents = extarray
        mtag.units = ["V", "s"]

        mtag.references.append(da)

        for pos in range(nticks):
            for ext in range(2, nticks-pos):
                mtag.positions[:] = [pos]
                mtag.extents[:] = [ext]
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0), da[pos:pos+ext])
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Exclusive), da[pos:pos+ext])
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Inclusive),
                                                     da[pos:pos+ext+1])

                # +0.1 should round up (ceil) the start position
                # +0.1 * 2 should round down (floor) the stop position and works the same for both inclusive and
                # exclusive
                mtag.positions[:] = [pos+0.1]
                mtag.extents[:] = [ext+0.1]
                start = pos+1
                stop = pos+ext+1
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0), da[start:stop])
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Exclusive), da[start:stop])
                np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Inclusive), da[start:stop])

                if pos+ext+2 < len(da):
                    # +0.9 should round up (ceil) the start position
                    # +0.9 * 2 should round down (floor) the stop position and works the same for both inclusive and
                    # exclusive
                    mtag.positions[:] = [pos+0.9]
                    mtag.extents[:] = [ext+0.9]
                    start = pos+1
                    stop = pos+ext+2
                    np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0), da[start:stop])
                    np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Exclusive),
                                                         da[start:stop])
                    np.testing.assert_array_almost_equal(mtag.tagged_data(0, 0, nix.SliceMode.Inclusive),
                                                         da[start:stop])