File: test_tag.py

package info (click to toggle)
python-nixio 1.5.4%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,888 kB
  • sloc: python: 12,527; cpp: 832; makefile: 25
file content (674 lines) | stat: -rw-r--r-- 28,878 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
# -*- coding: utf-8 -*-
# Copyright © 2014, German Neuroinformatics Node (G-Node)
#
# All rights reserved.
#
# Redistribution and use in section and binary forms, with or without
# modification, are permitted under the terms of the BSD License. See
# LICENSE file in the root of the Project.
import os
import time
import unittest
from collections import OrderedDict
import numpy as np
import nixio as nix
from nixio.exceptions import UnsupportedLinkType
from .tmp import TempDir


class TestTags(unittest.TestCase):

    def setUp(self):
        self.tmpdir = TempDir("tagtest")
        self.testfilename = os.path.join(self.tmpdir.path, "tagtest.nix")
        self.file = nix.File.open(self.testfilename, nix.FileMode.Overwrite)
        self.block = self.file.create_block("test block", "recordingsession")

        self.my_array = self.block.create_data_array("my array", "test",
                                                     nix.DataType.Int16, (1,))
        self.my_tag = self.block.create_tag(
            "my tag", "tag", [0]
        )
        self.my_tag.references.append(self.my_array)

        self.your_array = self.block.create_data_array(
            "your array", "test", nix.DataType.Int16, (1,)
        )
        self.your_tag = self.block.create_tag(
            "your tag", "tag", [0]
        )
        self.your_tag.references.append(self.your_array)

    def tearDown(self):
        del self.file.blocks[self.block.id]
        self.file.close()
        self.tmpdir.cleanup()

    def test_flex(self):
        tag1d = self.block.create_tag("1dim tag", "tag", [1])
        tag2d = self.block.create_tag("2dim tag", "tag", [1, 1])
        tag3d = self.block.create_tag("3dim tag", "tag", [1, 1, 1])
        da1d = self.block.create_data_array("1d array", "da",
                                            data=np.arange(5))
        da1d.append_sampled_dimension(1., label="time", unit="s")
        da2d = self.block.create_data_array("2d array", "da",
                                            data=np.arange(25).reshape((5, 5)))
        da2d.append_sampled_dimension(1., label="time", unit="s")
        da2d.append_set_dimension()
        da3d = self.block.create_data_array("3d array", "da",
                                            data=np.arange(125)
                                            .reshape((5, 5, 5)))
        da3d.append_sampled_dimension(1., label="time", unit="s")
        da3d.append_set_dimension()
        da3d.append_set_dimension()
        tag1d.extent = [1]
        tag1d.references.extend([da1d, da2d, da3d])
        assert list(tag1d.references) == [da1d, da2d, da3d]
        ref1 = tag1d.tagged_data(1)  # 1d tag to 2d data
        for (ref_val, da_val) in zip(ref1[:].flatten(), da2d[1:3, :].flatten()):
            assert ref_val == da_val
        tag2d.extent = [1, 2]
        tag2d.references.extend([da1d, da2d, da3d])
        tag2d.tagged_data(0)  # 2d tag to 1d data
        tag3d.extent = [1, 2, 3]
        tag3d.references.extend([da1d, da2d, da3d])
        np.testing.assert_array_equal(tag3d.tagged_data(0), da1d[1:2])
        np.testing.assert_array_equal(tag3d.tagged_data(1), da2d[1:2, 1:3])
        np.testing.assert_array_equal(tag3d.tagged_data(2), da3d[1:2, 1:3, 1:4])

    def test_tag_eq(self):
        assert self.my_tag == self.my_tag
        assert not self.my_tag == self.your_tag
        assert self.my_tag is not None

    def test_tag_id(self):
        assert self.my_tag.id is not None

    def test_tag_name(self):
        assert self.my_tag.name is not None

    def test_tag_type(self):
        def set_none():
            self.my_tag.type = None

        assert self.my_tag.type is not None
        self.assertRaises(Exception, set_none)

        self.my_tag.type = "foo type"
        assert self.my_tag.type == "foo type"

    def test_tag_definition(self):
        assert self.my_tag.definition is None

        self.my_tag.definition = "definition"
        assert self.my_tag.definition == "definition"

        self.my_tag.definition = None
        assert self.my_tag.definition is None

    def test_tag_timestamps(self):
        created_at = self.my_tag.created_at
        assert created_at > 0

        updated_at = self.my_tag.updated_at
        assert updated_at > 0

        self.my_tag.force_created_at(1403530068)
        assert self.my_tag.created_at == 1403530068

    def test_tag_units(self):
        assert self.my_tag.units == ()

        self.my_tag.units = ["mV", "ms"]
        assert self.my_tag.units == ("mV", "ms")

        self.my_tag.units = []
        assert self.my_tag.units == ()

    def test_tag_position(self):
        assert self.my_tag.position == (0,)

        self.my_tag.position = (1.0, 2.0, 3.0)
        assert self.my_tag.position == (1.0, 2.0, 3.0)

    def test_tag_extent(self):
        assert self.my_tag.extent == ()

        self.my_tag.extent = (1.0, 2.0, 3.0)
        assert self.my_tag.extent == (1.0, 2.0, 3.0)

        self.my_tag.extent = []
        assert self.my_tag.extent == ()

    def test_tag_references(self):
        assert len(self.my_tag.references) == 1

        self.assertRaises(TypeError, self.my_tag.references.append, 100)

        reference1 = self.block.create_data_array("reference1", "stimuli",
                                                  nix.DataType.Int16, (1,))
        reference2 = self.block.create_data_array("reference2", "stimuli",
                                                  nix.DataType.Int16, (1,))

        self.my_tag.references.append(reference1)
        self.my_tag.references.append(reference2)

        assert reference1.name in self.my_tag.references

        assert len(self.my_tag.references) == 3
        assert reference1 in self.my_tag.references
        assert reference2 in self.my_tag.references

        # id and name access
        assert reference1 == self.my_tag.references[reference1.name]
        assert reference1 == self.my_tag.references[reference1.id]
        assert reference2 == self.my_tag.references[reference2.name]
        assert reference2 == self.my_tag.references[reference2.id]

        assert reference1.name in self.my_tag.references
        assert reference2.name in self.my_tag.references
        assert reference1.id in self.my_tag.references
        assert reference2.id in self.my_tag.references

        del self.my_tag.references[reference2]
        assert self.my_array in self.my_tag.references
        assert reference1 in self.my_tag.references

        del self.my_tag.references[reference1]
        assert len(self.my_tag.references) == 1

    def test_tag_features(self):
        assert len(self.my_tag.features) == 0

        data_array = self.block.create_data_array("feature", "stimuli",
                                                  nix.DataType.Int16, (1,))
        da_feature = self.my_tag.create_feature(data_array, nix.LinkType.Untagged)

        assert len(self.my_tag.features) == 1

        assert da_feature in self.my_tag.features
        assert da_feature.id in self.my_tag.features
        assert "notexist" not in self.my_tag.features

        assert da_feature.id == self.my_tag.features[0].id
        assert da_feature.id == self.my_tag.features[-1].id

        # id and name access
        assert da_feature.id == self.my_tag.features[da_feature.id].id
        assert da_feature.id == self.my_tag.features[data_array.id].id
        assert da_feature.id == self.my_tag.features[data_array.name].id
        assert data_array == self.my_tag.features[data_array.id].data
        assert data_array == self.my_tag.features[data_array.name].data

        assert data_array.id in self.my_tag.features
        assert data_array.name in self.my_tag.features

        data_frame = self.block.create_data_frame(
            "dataframe feature", "test",
            col_dict=OrderedDict([("number", nix.DataType.Float)]),
            data=[(10.,)]
        )
        df_feature = self.my_tag.create_feature(data_frame, nix.LinkType.Untagged)

        assert len(self.my_tag.features) == 2

        assert df_feature in self.my_tag.features
        assert df_feature.id in self.my_tag.features

        assert df_feature.id == self.my_tag.features[1].id
        assert df_feature.id == self.my_tag.features[-1].id

        # id and name access
        assert df_feature.id == self.my_tag.features[df_feature.id].id
        assert df_feature.id == self.my_tag.features[data_frame.id].id
        assert df_feature.id == self.my_tag.features[data_frame.name].id
        assert data_frame == self.my_tag.features[data_frame.id].data
        assert data_frame == self.my_tag.features[data_frame.name].data

        assert data_frame.id in self.my_tag.features
        assert data_frame.name in self.my_tag.features

        assert isinstance(self.my_tag.features[0].data, nix.DataArray)
        assert isinstance(self.my_tag.features[1].data, nix.DataFrame)

        del self.my_tag.features[0]
        assert len(self.my_tag.features) == 1
        del self.my_tag.features[0]
        assert len(self.my_tag.features) == 0

    def test_tag_tagged_data(self):
        sample_iv = 1.0
        ticks = [1.2, 2.3, 3.4, 4.5, 6.7]
        unit = "ms"
        pos = [0.0, 2.0, 3.4]
        ext = [0.1, 6.0, 2.3]
        units = ["none", "ms", "ms"]
        data = np.random.random_sample((2, 10, 5))
        da = self.block.create_data_array("dimtest", "test",
                                          data=data)
        setdim = da.append_set_dimension()
        setdim.labels = ["Label A", "Label B"]
        samdim = da.append_sampled_dimension(sample_iv)
        samdim.unit = unit
        randim = da.append_range_dimension(ticks)
        randim.unit = unit

        postag = self.block.create_tag("postag", "event", pos)
        postag.references.append(da)
        postag.units = units

        segtag = self.block.create_tag("region", "segment", pos)
        segtag.references.append(da)
        segtag.extent = ext
        segtag.units = units

        posdata = postag.tagged_data(0)
        assert len(posdata.shape) == 3
        assert posdata.shape == (1, 1, 1)

        segdata = segtag.tagged_data(0)
        assert len(segdata.shape) == 3
        assert segdata.shape == (1, 6, 2)

        # retrieve data by id and name
        posdata = postag.tagged_data(da.name)
        assert len(posdata.shape) == 3
        assert posdata.shape == (1, 1, 1)
        segdata = segtag.tagged_data(da.name)
        assert len(segdata.shape) == 3
        assert segdata.shape == (1, 6, 2)

        posdata = postag.tagged_data(da.id)
        assert len(posdata.shape) == 3
        assert posdata.shape == (1, 1, 1)
        segdata = segtag.tagged_data(da.id)
        assert len(segdata.shape) == 3
        assert segdata.shape == (1, 6, 2)

    def test_tag_tagged_data_slice_mode(self):
        data = np.random.random_sample((3, 100, 10))
        da = self.block.create_data_array("signals", "test.signals", data=data)
        da.unit = "mV"
        da.append_set_dimension(labels=["A", "B", "C"])
        sample_iv = 0.001
        timedim = da.append_sampled_dimension(sampling_interval=sample_iv)
        timedim.unit = "s"
        posdim = da.append_range_dimension([1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9])
        posdim.unit = "mm"

        # exact_tag has a pos+ext that is exactly equal to a dimension tick
        exact_tag = self.block.create_tag("tickpoint", "test.tag", position=[0, 0.03, 0.0011])
        exact_tag.extent = [0.2, 0.02, 0.0005]
        exact_tag.units = ["none", "s", "m"]

        exact_tag.references.append(da)

        # dim2: [0.001, 0.002, ..., 0.03, 0.031, ..., 0.049, 0.05, 0.051, ...]
        #                           ^ pos [30]               ^ pos+ext [50]
        # Inclusive mode includes index 50, exclusive does not
        #
        # dim3: [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9]
        #             ^ pos [1]                ^ pos+ext [6]
        # Inclusive mode includes index 6, exclusive does not

        slice_default = exact_tag.tagged_data(0)
        assert slice_default.shape == (1, 20, 5)
        np.testing.assert_array_equal(slice_default, da[0:1, 30:50, 1:6])  # default exclusive

        slice_inclusive = exact_tag.tagged_data(0, stop_rule=nix.SliceMode.Inclusive)
        assert slice_inclusive.shape == (1, 21, 6)
        np.testing.assert_array_equal(slice_inclusive, da[0:1, 30:51, 1:7])

        slice_exclusive = exact_tag.tagged_data(0, stop_rule=nix.SliceMode.Exclusive)
        assert slice_exclusive.shape == (1, 20, 5)
        np.testing.assert_array_equal(slice_exclusive, da[0:1, 30:50, 1:6])

        # midpoint_tag has a pos+ext that falls between dimension ticks
        midpoint_tag = self.block.create_tag("midpoint", "test.tag", position=[0, 0.03, 0.0011])
        midpoint_tag.extent = [0.1, 0.0301, 0.00051]  # .1 offset
        midpoint_tag.units = ["none", "s", "m"]

        # dim2: [0.001, 0.002, ..., 0.03, 0.031, ..., 0.059, 0.06,|   0.061, ...]
        #                           ^ pos [30]                    ^ pos+ext [60] + 0.1
        # Both inclusive and exclusive include index 60
        #
        # dim3: [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,|   1.7, 1.8, 1.9]
        #             ^ pos [1]                    ^ pos+ext [6] + 0.1
        # Both inclusive and exclusive include index 6

        midpoint_tag.references.append(da)

        # all slicing is inclusive since the pos+ext points are between ticks
        slice_default = midpoint_tag.tagged_data(0)
        assert slice_default.shape == (1, 31, 6)
        np.testing.assert_array_equal(slice_default, da[0:1, 30:61, 1:7])

        slice_inclusive = midpoint_tag.tagged_data(0, stop_rule=nix.SliceMode.Inclusive)
        assert slice_inclusive.shape == (1, 31, 6)
        np.testing.assert_array_equal(slice_inclusive, da[0:1, 30:61, 1:7])

        slice_exclusive = midpoint_tag.tagged_data(0, stop_rule=nix.SliceMode.Exclusive)
        assert slice_exclusive.shape == (1, 31, 6)
        np.testing.assert_array_equal(slice_exclusive, da[0:1, 30:61, 1:7])

    def test_tag_feature_data(self):
        number_data = np.random.random(20)
        number_feat = self.block.create_data_array("number feature", "test",
                                                   data=number_data)
        dim = number_feat.append_sampled_dimension(1.0)
        dim.unit = "ms"
        dim.offset = 1.0

        ramp_data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
        ramp_feat = self.block.create_data_array("ramp feature", "test",
                                                 data=np.asarray(ramp_data))
        ramp_feat.label = "voltage"
        ramp_feat.unit = "mV"
        dim = ramp_feat.append_sampled_dimension(1.0)
        dim.unit = "ms"
        dim.offset = 2.0

        pos_tag = self.block.create_tag("feature test", "test", [5.0])
        pos_tag.units = ["ms"]

        pos_tag.create_feature(number_feat, nix.LinkType.Tagged)
        pos_tag.create_feature(number_feat, nix.LinkType.Untagged)
        pos_tag.create_feature(number_feat, nix.LinkType.Indexed)
        pos_tag.create_feature(ramp_feat, nix.LinkType.Tagged)
        pos_tag.create_feature(ramp_feat, nix.LinkType.Untagged)
        pos_tag.create_feature(ramp_feat, nix.LinkType.Indexed)
        assert len(pos_tag.features) == 6

        data1 = pos_tag.feature_data(0)
        data2 = pos_tag.feature_data(1)
        data3 = pos_tag.feature_data(2)
        data4 = pos_tag.feature_data(3)
        data5 = pos_tag.feature_data(4)
        data6 = pos_tag.feature_data(5)

        assert data1.size == 1
        assert data2.size == len(number_data)
        assert data3.size == len(number_data)
        assert data4.size == 1
        assert data5.size == len(ramp_data)
        assert data6.size == len(ramp_data)

        # check expected data
        # For Tag, both Indexed and Untagged just return the full data
        assert np.all(data1[:] == number_data[4:5])
        assert np.all(data2[:] == number_data[:])
        assert np.all(data3[:] == number_data[:])
        assert np.all(data4[:] == ramp_data[3:4])
        assert np.all(data5[:] == ramp_data[:])
        assert np.all(data6[:] == ramp_data[:])

        # make the tag pointing to a slice
        pos_tag.extent = [2.0]
        data1 = pos_tag.feature_data(0)
        data2 = pos_tag.feature_data(1)
        data3 = pos_tag.feature_data(2)
        data4 = pos_tag.feature_data(3)
        data5 = pos_tag.feature_data(4)
        data6 = pos_tag.feature_data(5)

        assert np.all(data1[:] == number_data[4:6])
        assert np.all(data2[:] == number_data[:])
        assert np.all(data3[:] == number_data[:])
        assert np.all(data4[:] == ramp_data[3:5])
        assert np.all(data5[:] == ramp_data[:])
        assert np.all(data6[:] == ramp_data[:])

    def test_tag_feature_dataframe(self):
        numberdata = np.random.random(20)
        number_feat = self.block.create_data_frame(
            "number feature", "test",
            col_dict=OrderedDict([("number", nix.DataType.Float)]),
            data=[(n,) for n in numberdata]
        )
        column_descriptions = OrderedDict([("name", nix.DataType.String), ("duration", nix.DataType.Double)])
        values = [("One", 0.1), ("Two", 0.2), ("Three", 0.3), ("Four", 0.4), ("Five", 0.5),
                  ("Six", 0.6), ("Seven", 0.7), ("Eight", 0.8), ("Nine", 0.9), ("Ten", 1.0)]
        ramp_feat = self.block.create_data_frame("ramp feature", "test", col_dict=column_descriptions, data=values)
        ramp_feat.label = "voltage"
        ramp_feat.units = (None, "s")

        pos_tag = self.block.create_tag("feature test", "test", [5.0])

        with self.assertRaises(UnsupportedLinkType):
            pos_tag.create_feature(number_feat, nix.LinkType.Tagged)
        pos_tag.create_feature(number_feat, nix.LinkType.Untagged)
        pos_tag.create_feature(number_feat, nix.LinkType.Indexed)
        with self.assertRaises(UnsupportedLinkType):
            pos_tag.create_feature(ramp_feat, nix.LinkType.Tagged)
        pos_tag.create_feature(ramp_feat, nix.LinkType.Untagged)
        pos_tag.create_feature(ramp_feat, nix.LinkType.Indexed)
        assert len(pos_tag.features) == 4

        data1 = pos_tag.feature_data(0)
        data2 = pos_tag.feature_data(1)
        data3 = pos_tag.feature_data(2)
        data4 = pos_tag.feature_data(3)

        # check expected data
        # For Tag, both Indexed and Untagged just return the full data
        assert np.all(data1[:] == number_feat[:])
        assert np.all(data2[:] == number_feat[:])
        assert np.all(data3[:] == ramp_feat[:])
        assert np.all(data4[:] == ramp_feat[:])

        # Extent should have no effect
        pos_tag.extent = [2.0]
        data1 = pos_tag.feature_data(0)
        data2 = pos_tag.feature_data(1)
        data3 = pos_tag.feature_data(2)
        data4 = pos_tag.feature_data(3)

        assert np.all(data1[:] == number_feat[:])
        assert np.all(data2[:] == number_feat[:])
        assert np.all(data3[:] == ramp_feat[:])
        assert np.all(data4[:] == ramp_feat[:])

    def test_timestamp_autoupdate(self):
        tag = self.block.create_tag("tag.time", "test.time", [-1])

        tagtime = tag.updated_at
        time.sleep(1)  # wait for time to change
        tag.position = [-100]
        self.assertNotEqual(tag.updated_at, tagtime)

        tagtime = tag.updated_at
        time.sleep(1)  # wait for time to change
        tag.extent = [30]
        self.assertNotEqual(tag.updated_at, tagtime)

        tagtime = tag.updated_at
        time.sleep(1)  # wait for time to change
        tag.units = "Mm"
        self.assertNotEqual(tag.updated_at, tagtime)

    def test_timestamp_noautoupdate(self):
        self.file.auto_update_timestamps = False
        tag = self.block.create_tag("tag.time", "test.time", [-1])

        tagtime = tag.updated_at
        time.sleep(1)  # wait for time to change
        tag.position = [-100]
        self.assertEqual(tag.updated_at, tagtime)

        tagtime = tag.updated_at
        time.sleep(1)  # wait for time to change
        tag.extent = [30]
        self.assertEqual(tag.updated_at, tagtime)

        tagtime = tag.updated_at
        time.sleep(1)  # wait for time to change
        tag.units = "Mm"
        self.assertEqual(tag.updated_at, tagtime)

    def test_tagged_set_dim(self):
        """
        Simple test where the slice can be calculated directly from the position and extent and compared to the original
        data.
        Set dimension slicing.
        """
        nsignals = 10
        data = np.random.random_sample((nsignals, 100))
        da = self.block.create_data_array("data", "data", data=data)
        da.append_set_dimension()
        da.append_sampled_dimension(sampling_interval=1).unit = "s"

        tag = self.block.create_tag("tag", "simple", position=[])

        tag.references.append(da)

        for pos in range(nsignals):
            for ext in range(2, nsignals-pos):
                tag.position = [pos]
                tag.extent = [ext]
                np.testing.assert_array_almost_equal(tag.tagged_data(0), da[pos:pos+ext])
                np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Exclusive), da[pos:pos+ext])
                np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Inclusive), da[pos:pos+ext+1])

                # +0.1 should round up (ceil) the start position
                # +0.1 * 2 should round down (floor) the stop position and works the same for both inclusive and
                # exclusive
                tag.position = [pos+0.1]
                tag.extent = [ext+0.1]
                start = pos+1
                stop = pos+ext+1
                np.testing.assert_array_almost_equal(tag.tagged_data(0), da[start:stop])
                np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Exclusive), da[start:stop])
                np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Inclusive), da[start:stop])

                if pos+ext+2 < len(da):
                    # +0.9 should round up (ceil) the start position
                    # +0.9 *2 should round down (floor) the stop position and works the same for both inclusive and
                    # exclusive
                    tag.position = [pos+0.9]
                    tag.extent = [ext+0.9]
                    start = pos+1
                    stop = pos+ext+2
                    np.testing.assert_array_almost_equal(tag.tagged_data(0), da[start:stop])
                    np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Exclusive), da[start:stop])
                    np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Inclusive), da[start:stop])

    def test_tagged_range_dim(self):
        """
        Simple test where the slice can be calculated directly from the position and extent and compared to the original
        data.
        Range dimension slicing.
        """
        nticks = 10
        data = np.random.random_sample((nticks, 100))
        da = self.block.create_data_array("data", "data", data=data)
        da.append_range_dimension(ticks=range(nticks))
        da.append_sampled_dimension(sampling_interval=1).unit = "s"

        tag = self.block.create_tag("tag", "simple", position=[])

        tag.references.append(da)

        for pos in range(nticks):
            for ext in range(2, nticks-pos):
                tag.position = [pos]
                tag.extent = [ext]
                np.testing.assert_array_almost_equal(tag.tagged_data(0), da[pos:pos+ext])
                np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Exclusive), da[pos:pos+ext])
                np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Inclusive), da[pos:pos+ext+1])

                # +0.1 should round up (ceil) the start position
                # +0.1 * 2 should round down (floor) the stop position and works the same for both inclusive and
                # exclusive
                tag.position = [pos + 0.1]
                tag.extent = [ext + 0.1]
                start = pos + 1
                stop = pos + ext + 1
                np.testing.assert_array_almost_equal(tag.tagged_data(0), da[start:stop])
                np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Exclusive), da[start:stop])
                np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Inclusive), da[start:stop])

                if pos + ext + 2 < len(da):
                    # +0.9 should round up (ceil) the start position
                    # +0.9 * 2 should round down (floor) the stop position and works the same for both inclusive and
                    # exclusive
                    tag.position = [pos + 0.9]
                    tag.extent = [ext + 0.9]
                    start = pos + 1
                    stop = pos + ext + 2
                    np.testing.assert_array_almost_equal(tag.tagged_data(0), da[start:stop])
                    np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Exclusive), da[start:stop])
                    np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Inclusive), da[start:stop])

        time_vector = np.arange(0.0, 10., 0.001)
        indices = np.random.rand(len(time_vector))
        event_data = time_vector[(indices < 0.1)]
        event_data = event_data[(event_data < 4) | (event_data > 7)]

        event_da = self.block.create_data_array("event_data", "nix.events", data=event_data, unit="s")
        event_da.append_range_dimension_using_self()

        tt = self.block.create_tag("no_event_segment", "nix.segment", 4.5)
        tt.extent = 1.0
        tt.references.append(event_da)
        sl = tt.tagged_data(0)
        self.assertFalse(sl.valid)

        tt2 = self.block.create_tag("beyond data", "nix.segment", 12.0)
        tt2.extent = 3.0
        tt2.references.append(event_da)
        sl = tt2.tagged_data(0)
        self.assertFalse(sl.valid)

        tt3 = self.block.create_tag("reachingbeyonddata", "nix.segment", 8.5)
        tt3.extent = [3.0]
        tt3.references.append(event_da)
        sl = tt3.tagged_data(0)
        self.assertTrue(sl.valid)

    def test_tagged_sampled_dim(self):
        """
        Simple test where the slice can be calculated directly from the position and extent and compared to the original
        data.
        Sampled dimension slicing.
        """
        nticks = 10
        data = np.random.random_sample((nticks, 100))
        da = self.block.create_data_array("data", "data", data=data)
        da.append_sampled_dimension(sampling_interval=1).unit = "V"
        da.append_sampled_dimension(sampling_interval=1).unit = "s"

        tag = self.block.create_tag("tag", "simple", position=[])
        tag.units = ["V", "s"]

        tag.references.append(da)

        for pos in range(nticks):
            for ext in range(2, nticks-pos):
                tag.position = [pos]
                tag.extent = [ext]
                np.testing.assert_array_almost_equal(tag.tagged_data(0), da[pos:pos+ext])
                np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Exclusive), da[pos:pos+ext])
                np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Inclusive), da[pos:pos+ext+1])

                # +0.1 should round up (ceil) the start position
                # +0.1 * 2 should round down (floor) the stop position and works the same for both inclusive and
                # exclusive
                tag.position = [pos+0.1]
                tag.extent = [ext+0.1]
                start = pos+1
                stop = pos+ext+1
                np.testing.assert_array_almost_equal(tag.tagged_data(0), da[start:stop])
                np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Exclusive), da[start:stop])
                np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Inclusive), da[start:stop])

                if pos+ext+2 < len(da):
                    # +0.9 should round up (ceil) the start position
                    # +0.9 * 2 should round down (floor) the stop position and works the same for both inclusive and
                    # exclusive
                    tag.position = [pos+0.9]
                    tag.extent = [ext+0.9]
                    start = pos+1
                    stop = pos+ext+2
                    np.testing.assert_array_almost_equal(tag.tagged_data(0), da[start:stop])
                    np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Exclusive), da[start:stop])
                    np.testing.assert_array_almost_equal(tag.tagged_data(0, nix.SliceMode.Inclusive), da[start:stop])