File: _simplex.c

package info (click to toggle)
python-noise 1.2.3-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 576 kB
  • sloc: python: 1,300; ansic: 719; makefile: 5
file content (442 lines) | stat: -rw-r--r-- 13,715 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
// Copyright (c) 2008, Casey Duncan (casey dot duncan at gmail dot com)
// see LICENSE.txt for details
// $Id$

#include "Python.h"
#include <math.h>
#include <float.h>
#include "_noise.h"

// 2D simplex skew factors
#define F2 0.3660254037844386f  // 0.5 * (sqrt(3.0) - 1.0)
#define G2 0.21132486540518713f // (3.0 - sqrt(3.0)) / 6.0

float 
noise2(float x, float y) 
{
	int i1, j1, I, J, c;
	float s = (x + y) * F2;
	float i = floorf(x + s);
	float j = floorf(y + s);
	float t = (i + j) * G2;

	float xx[3], yy[3], f[3];
	float noise[3] = {0.0f, 0.0f, 0.0f};
	int g[3];

	xx[0] = x - (i - t);
	yy[0] = y - (j - t);

	i1 = xx[0] > yy[0];
	j1 = xx[0] <= yy[0];

	xx[2] = xx[0] + G2 * 2.0f - 1.0f;
	yy[2] = yy[0] + G2 * 2.0f - 1.0f;
	xx[1] = xx[0] - i1 + G2;
	yy[1] = yy[0] - j1 + G2;

	I = (int) i & 255;
	J = (int) j & 255;
	g[0] = PERM[I + PERM[J]] % 12;
	g[1] = PERM[I + i1 + PERM[J + j1]] % 12;
	g[2] = PERM[I + 1 + PERM[J + 1]] % 12;

	for (c = 0; c <= 2; c++)
		f[c] = 0.5f - xx[c]*xx[c] - yy[c]*yy[c];
	
	for (c = 0; c <= 2; c++)
		if (f[c] > 0)
			noise[c] = f[c]*f[c]*f[c]*f[c] * (GRAD3[g[c]][0]*xx[c] + GRAD3[g[c]][1]*yy[c]);
	
	return (noise[0] + noise[1] + noise[2]) * 70.0f;
}

#define dot3(v1, v2) ((v1)[0]*(v2)[0] + (v1)[1]*(v2)[1] + (v1)[2]*(v2)[2])

#define ASSIGN(a, v0, v1, v2) (a)[0] = v0; (a)[1] = v1; (a)[2] = v2;

#define F3 (1.0f / 3.0f)
#define G3 (1.0f / 6.0f)

float 
noise3(float x, float y, float z) 
{
	int c, o1[3], o2[3], g[4], I, J, K;
	float f[4], noise[4] = {0.0f, 0.0f, 0.0f, 0.0f};
	float s = (x + y + z) * F3;
	float i = floorf(x + s);
	float j = floorf(y + s);
	float k = floorf(z + s);
	float t = (i + j + k) * G3;

	float pos[4][3];

	pos[0][0] = x - (i - t);
	pos[0][1] = y - (j - t);
	pos[0][2] = z - (k - t);

	if (pos[0][0] >= pos[0][1]) {
		if (pos[0][1] >= pos[0][2]) {
			ASSIGN(o1, 1, 0, 0);
			ASSIGN(o2, 1, 1, 0);
		} else if (pos[0][0] >= pos[0][2]) {
			ASSIGN(o1, 1, 0, 0);
			ASSIGN(o2, 1, 0, 1);
		} else {
			ASSIGN(o1, 0, 0, 1);
			ASSIGN(o2, 1, 0, 1);
		}
	} else {
		if (pos[0][1] < pos[0][2]) {
			ASSIGN(o1, 0, 0, 1);
			ASSIGN(o2, 0, 1, 1);
		} else if (pos[0][0] < pos[0][2]) {
			ASSIGN(o1, 0, 1, 0);
			ASSIGN(o2, 0, 1, 1);
		} else {
			ASSIGN(o1, 0, 1, 0);
			ASSIGN(o2, 1, 1, 0);
		}
	}
	
	for (c = 0; c <= 2; c++) {
		pos[3][c] = pos[0][c] - 1.0f + 3.0f * G3;
		pos[2][c] = pos[0][c] - o2[c] + 2.0f * G3;
		pos[1][c] = pos[0][c] - o1[c] + G3;
	}

	I = (int) i & 255; 
	J = (int) j & 255; 
	K = (int) k & 255;
	g[0] = PERM[I + PERM[J + PERM[K]]] % 12;
	g[1] = PERM[I + o1[0] + PERM[J + o1[1] + PERM[o1[2] + K]]] % 12;
	g[2] = PERM[I + o2[0] + PERM[J + o2[1] + PERM[o2[2] + K]]] % 12;
	g[3] = PERM[I + 1 + PERM[J + 1 + PERM[K + 1]]] % 12; 

	for (c = 0; c <= 3; c++) {
		f[c] = 0.6f - pos[c][0]*pos[c][0] - pos[c][1]*pos[c][1] - pos[c][2]*pos[c][2];
	}
	
	for (c = 0; c <= 3; c++) {
		if (f[c] > 0) {
			noise[c] = f[c]*f[c]*f[c]*f[c] * dot3(pos[c], GRAD3[g[c]]);
		}
	}
	
	return (noise[0] + noise[1] + noise[2] + noise[3]) * 32.0f;
}

static inline float
fbm_noise3(float x, float y, float z, int octaves, float persistence, float lacunarity) {
    float freq = 1.0f;
    float amp = 1.0f;
    float max = 1.0f;
    float total = noise3(x, y, z);
    int i;

    for (i = 1; i < octaves; ++i) {
        freq *= lacunarity;
        amp *= persistence;
        max += amp;
        total += noise3(x * freq, y * freq, z * freq) * amp;
    }
    return total / max;
}

#define dot4(v1, x, y, z, w) ((v1)[0]*(x) + (v1)[1]*(y) + (v1)[2]*(z) + (v1)[3]*(w))

#define F4 0.30901699437494745f /* (sqrt(5.0) - 1.0) / 4.0 */
#define G4 0.1381966011250105f /* (5.0 - sqrt(5.0)) / 20.0 */

float 
noise4(float x, float y, float z, float w) {
    float noise[5] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f};

    float s = (x + y + z + w) * F4;
    float i = floorf(x + s);
    float j = floorf(y + s);
    float k = floorf(z + s);
    float l = floorf(w + s);
    float t = (i + j + k + l) * G4;

    float x0 = x - (i - t);
    float y0 = y - (j - t);
    float z0 = z - (k - t);
    float w0 = w - (l - t);

    int c = (x0 > y0)*32 + (x0 > z0)*16 + (y0 > z0)*8 + (x0 > w0)*4 + (y0 > w0)*2 + (z0 > w0);
    int i1 = SIMPLEX[c][0]>=3;
    int j1 = SIMPLEX[c][1]>=3;
    int k1 = SIMPLEX[c][2]>=3;
    int l1 = SIMPLEX[c][3]>=3;
    int i2 = SIMPLEX[c][0]>=2;
    int j2 = SIMPLEX[c][1]>=2;
    int k2 = SIMPLEX[c][2]>=2;
    int l2 = SIMPLEX[c][3]>=2;
    int i3 = SIMPLEX[c][0]>=1;
    int j3 = SIMPLEX[c][1]>=1;
    int k3 = SIMPLEX[c][2]>=1;
    int l3 = SIMPLEX[c][3]>=1;

    float x1 = x0 - i1 + G4;
    float y1 = y0 - j1 + G4;
    float z1 = z0 - k1 + G4;
    float w1 = w0 - l1 + G4;
    float x2 = x0 - i2 + 2.0f*G4;
    float y2 = y0 - j2 + 2.0f*G4;
    float z2 = z0 - k2 + 2.0f*G4;
    float w2 = w0 - l2 + 2.0f*G4;
    float x3 = x0 - i3 + 3.0f*G4;
    float y3 = y0 - j3 + 3.0f*G4;
    float z3 = z0 - k3 + 3.0f*G4;
    float w3 = w0 - l3 + 3.0f*G4;
    float x4 = x0 - 1.0f + 4.0f*G4;
    float y4 = y0 - 1.0f + 4.0f*G4;
    float z4 = z0 - 1.0f + 4.0f*G4;
    float w4 = w0 - 1.0f + 4.0f*G4;

    int I = (int)i & 255;
    int J = (int)j & 255;
    int K = (int)k & 255;
    int L = (int)l & 255;
    int gi0 = PERM[I + PERM[J + PERM[K + PERM[L]]]] & 0x1f;
    int gi1 = PERM[I + i1 + PERM[J + j1 + PERM[K + k1 + PERM[L + l1]]]] & 0x1f; 
    int gi2 = PERM[I + i2 + PERM[J + j2 + PERM[K + k2 + PERM[L + l2]]]] & 0x1f; 
    int gi3 = PERM[I + i3 + PERM[J + j3 + PERM[K + k3 + PERM[L + l3]]]] & 0x1f; 
    int gi4 = PERM[I + 1 + PERM[J + 1 + PERM[K + 1 + PERM[L + 1]]]] & 0x1f;
    float t0, t1, t2, t3, t4;

    t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0;
    if (t0 >= 0.0f) {
        t0 *= t0;
        noise[0] = t0 * t0 * dot4(GRAD4[gi0], x0, y0, z0, w0);
    }
    t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1;
    if (t1 >= 0.0f) {
        t1 *= t1;
        noise[1] = t1 * t1 * dot4(GRAD4[gi1], x1, y1, z1, w1);
    }
    t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2;
    if (t2 >= 0.0f) {
        t2 *= t2;
        noise[2] = t2 * t2 * dot4(GRAD4[gi2], x2, y2, z2, w2);
    }
    t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3;
    if (t3 >= 0.0f) {
        t3 *= t3;
        noise[3] = t3 * t3 * dot4(GRAD4[gi3], x3, y3, z3, w3);
    }
    t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4;
    if (t4 >= 0.0f) {
        t4 *= t4;
        noise[4] = t4 * t4 * dot4(GRAD4[gi4], x4, y4, z4, w4);
    }

    return 27.0 * (noise[0] + noise[1] + noise[2] + noise[3] + noise[4]);
}

static inline float
fbm_noise4(float x, float y, float z, float w, int octaves, float persistence, float lacunarity) {
    float freq = 1.0f;
    float amp = 1.0f;
    float max = 1.0f;
    float total = noise4(x, y, z, w);
    int i;

    for (i = 1; i < octaves; ++i) {
        freq *= lacunarity;
        amp *= persistence;
        max += amp;
        total += noise4(x * freq, y * freq, z * freq, w * freq) * amp;
    }
    return total / max;
}


static PyObject *
py_noise2(PyObject *self, PyObject *args, PyObject *kwargs)
{
	float x, y;
	int octaves = 1;
	float persistence = 0.5f;
    float lacunarity = 2.0f;
    float repeatx = FLT_MAX;
    float repeaty = FLT_MAX;
    float z = 0.0f;
	static char *kwlist[] = {"x", "y", "octaves", "persistence", "lacunarity", 
        "repeatx", "repeaty", "base", NULL};

	if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ff|ifffff:snoise2", kwlist,
		&x, &y, &octaves, &persistence, &lacunarity, &repeatx, &repeaty, &z)) {
		return NULL;
    }
    if (octaves <= 0) {
        PyErr_SetString(PyExc_ValueError, "Expected octaves value > 0");
        return NULL;
    }
	
    if (repeatx == FLT_MAX && repeaty == FLT_MAX) {
        // Flat noise, no tiling
        float freq = 1.0f;
        float amp = 1.0f;
        float max = 1.0f;
        float total = noise2(x + z, y + z);
        int i;

        for (i = 1; i < octaves; i++) {
            freq *= lacunarity;
            amp *= persistence;
            max += amp;
            total += noise2(x * freq + z, y * freq + z) * amp;
        }
        return (PyObject *) PyFloat_FromDouble((double) (total / max));
    } else { // Tiled noise
        float w = z;
        if (repeaty != FLT_MAX) {
            float yf = y * 2.0 / repeaty;
            float yr = repeaty * M_1_PI * 0.5;
            float vy = fast_sin(yf);
            float vyz = fast_cos(yf);
            y = vy * yr;
            w += vyz * yr;
            if (repeatx == FLT_MAX) {
                return (PyObject *) PyFloat_FromDouble(
                    (double) fbm_noise3(x, y, w, octaves, persistence, lacunarity));
            }
        }
        if (repeatx != FLT_MAX) {
            float xf = x * 2.0 / repeatx;
            float xr = repeatx * M_1_PI * 0.5;
            float vx = fast_sin(xf);
            float vxz = fast_cos(xf);
            x = vx * xr;
            z += vxz * xr;
            if (repeaty == FLT_MAX) {
                return (PyObject *) PyFloat_FromDouble(
                    (double) fbm_noise3(x, y, z, octaves, persistence, lacunarity));
            }
        }
        return (PyObject *) PyFloat_FromDouble(
            (double) fbm_noise4(x, y, z, w, octaves, persistence, lacunarity));
    }
}

static PyObject *
py_noise3(PyObject *self, PyObject *args, PyObject *kwargs)
{
	float x, y, z;
	int octaves = 1;
	float persistence = 0.5f;
    float lacunarity = 2.0f;

	static char *kwlist[] = {"x", "y", "z", "octaves", "persistence", "lacunarity", NULL};

	if (!PyArg_ParseTupleAndKeywords(args, kwargs, "fff|iff:snoise3", kwlist,
		&x, &y, &z, &octaves, &persistence, &lacunarity))
		return NULL;
	
	if (octaves == 1) {
		// Single octave, return simple noise
		return (PyObject *) PyFloat_FromDouble((double) noise3(x, y, z));
	} else if (octaves > 1) {
		return (PyObject *) PyFloat_FromDouble(
            (double) fbm_noise3(x, y, z, octaves, persistence, lacunarity));
	} else {
		PyErr_SetString(PyExc_ValueError, "Expected octaves value > 0");
		return NULL;
	}
}

static PyObject *
py_noise4(PyObject *self, PyObject *args, PyObject *kwargs)
{
	float x, y, z, w;
	int octaves = 1;
	float persistence = 0.5f;
	float lacunarity = 2.0f;

	static char *kwlist[] = {"x", "y", "z", "w", "octaves", "persistence", "lacunarity", NULL};

	if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ffff|iff:snoise4", kwlist,
		&x, &y, &z, &w, &octaves, &persistence, &lacunarity))
		return NULL;
	
	if (octaves == 1) {
		// Single octave, return simple noise
		return (PyObject *) PyFloat_FromDouble((double) noise4(x, y, z, w));
	} else if (octaves > 1) {
		return (PyObject *) PyFloat_FromDouble(
            (double) fbm_noise4(x, y, z, w, octaves, persistence, lacunarity));
	} else {
		PyErr_SetString(PyExc_ValueError, "Expected octaves value > 0");
		return NULL;
	}
}

static PyMethodDef simplex_functions[] = {
	{"noise2", (PyCFunction)py_noise2, METH_VARARGS | METH_KEYWORDS, 
		"noise2(x, y, octaves=1, persistence=0.5, lacunarity=2.0, repeatx=None, repeaty=None, base=0.0) "
        "return simplex noise value for specified 2D coordinate.\n\n"
		"octaves -- specifies the number of passes, defaults to 1 (simple noise).\n\n"
		"persistence -- specifies the amplitude of each successive octave relative\n"
		"to the one below it. Defaults to 0.5 (each higher octave's amplitude\n"
		"is halved). Note the amplitude of the first pass is always 1.0.\n\n"
        "lacunarity -- specifies the frequency of each successive octave relative\n"
        "to the one below it, similar to persistence. Defaults to 2.0.\n\n"
        "repeatx, repeaty -- specifies the interval along each axis when \n"
		"the noise values repeat. This can be used as the tile size for creating \n"
		"tileable textures\n\n"
		"base -- specifies a fixed offset for the noise coordinates. Useful for\n"
		"generating different noise textures with the same repeat interval"},
	{"noise3", (PyCFunction)py_noise3, METH_VARARGS | METH_KEYWORDS, 
		"noise3(x, y, z, octaves=1, persistence=0.5, lacunarity=2.0) return simplex noise value for "
		"specified 3D coordinate\n\n"
		"octaves -- specifies the number of passes, defaults to 1 (simple noise).\n\n"
		"persistence -- specifies the amplitude of each successive octave relative\n"
		"to the one below it. Defaults to 0.5 (each higher octave's amplitude\n"
		"is halved). Note the amplitude of the first pass is always 1.0.\n\n"
        "lacunarity -- specifies the frequency of each successive octave relative\n"
        "to the one below it, similar to persistence. Defaults to 2.0."},
	{"noise4", (PyCFunction)py_noise4, METH_VARARGS | METH_KEYWORDS, 
		"noise4(x, y, z, w, octaves=1, persistence=0.5, lacunarity=2.0) return simplex noise value for "
		"specified 4D coordinate\n\n"
		"octaves -- specifies the number of passes, defaults to 1 (simple noise).\n\n"
		"persistence -- specifies the amplitude of each successive octave relative\n"
		"to the one below it. Defaults to 0.5 (each higher octave's amplitude\n"
		"is halved). Note the amplitude of the first pass is always 1.0.\n\n"
        "lacunarity -- specifies the frequency of each successive octave relative\n"
        "to the one below it, similar to persistence. Defaults to 2.0."},
	{NULL}
};

PyDoc_STRVAR(module_doc, "Native-code simplex noise functions");

#if PY_MAJOR_VERSION >= 3

static struct PyModuleDef moduledef = {
	PyModuleDef_HEAD_INIT,
	"_simplex",
	module_doc,
	-1,                 /* m_size */
	simplex_functions,  /* m_methods */
	NULL,               /* m_reload (unused) */
	NULL,               /* m_traverse */
	NULL,               /* m_clear */
	NULL                /* m_free */
};

PyObject *
PyInit__simplex(void)
{
    return PyModule_Create(&moduledef);
}

#else

void
init_simplex(void)
{
	Py_InitModule3("_simplex", simplex_functions, module_doc);
}

#endif