1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
"""shader_noise shader function and texture generator
as described in "GPU Gems" chapter 5:
http://http.developer.nvidia.com/GPUGems/gpugems_ch05.html
"""
__version__ = "$Id: shader_noise.py 37 2008-06-27 22:25:39Z casey.duncan $"
from noise import pnoise3
import ctypes
from pyglet.gl import *
class ShaderNoiseTexture:
"""tiling 3D noise texture with two channels for use by the
shader noise functions.
"""
def __init__(self, freq=8, width=32):
"""Generate the 3D noise texture.
freq -- frequency of generated noise over the width of the
texture.
width -- Width of the texture in texels. The texture is cubic,
thus all sides are the same width. Must be a power of two.
Using a larger width can reduce artifacts caused by linear
interpolation of the noise texture, at the cost of video
memory, and possibly slower texture access.
"""
self.freq = freq
self.width = width
scale = float(freq) / width
width2 = width**2
texel = (ctypes.c_ushort * (2 * width**3))()
for z in range(width):
for y in range(width):
for x in range(width):
texel[(x + (y * width) + (z * width2)) * 2] = int((pnoise3(
x * scale, y * scale, z * scale,
repeatx=freq, repeaty=freq, repeatz=freq) + 1.0) * 32767)
texel[(x + (y * width) + (z * width2)) * 2 + 1] = int((pnoise3(
x * scale, y * scale, z * scale,
repeatx=freq, repeaty=freq, repeatz=freq, base=freq + 1) + 1.0) * 32767)
self.data = texel
def load(self):
"""Load the noise texture data into the current texture unit"""
glTexImage3D(GL_TEXTURE_3D, 0, GL_LUMINANCE16_ALPHA16,
self.width, self.width, self.width, 0, GL_LUMINANCE_ALPHA,
GL_UNSIGNED_SHORT, ctypes.byref(self.data))
def enable(self):
"""Convenience method to enable 3D texturing state so the texture may be used by the
ffpnoise shader function
"""
glEnable(GL_TEXTURE_3D)
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_REPEAT)
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_REPEAT)
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_REPEAT)
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)
shader_noise_glsl = '''
/*
* GLSL Shader functions for fast fake Perlin 3D noise
*
* The required shader_noise_tex texture can be generated using the
* ShaderNoiseTexture class. It is a toroidal tiling 3D texture with each texel
* containing two 16-bit noise source channels. The shader permutes the source
* texture values by combining the channels such that the noise repeats at a
* much larger interval than the input texture.
*/
uniform sampler3D shader_noise_tex;
const float twopi = 3.1415926 * 2.0;
/* Simple perlin noise work-alike */
float
pnoise(vec3 position)
{
vec4 hi = 2.0 * texture3D(shader_noise_tex, position.xyz) - 1.0;
vec4 lo = 2.0 * texture3D(shader_noise_tex, position.xyz / 9.0) - 1.0;
return hi.r * cos(twopi * lo.r) + hi.a * sin(twopi * lo.r);
}
/* Multi-octave fractal brownian motion perlin noise */
float
fbmnoise(vec3 position, int octaves)
{
float m = 1.0;
vec3 p = position;
vec4 hi = vec4(0.0);
/* XXX Loops may not work correctly on all video cards */
for (int x = 0; x < octaves; x++) {
hi += (2.0 * texture3D(shader_noise_tex, p.xyz) - 1.0) * m;
p *= 2.0;
m *= 0.5;
}
vec4 lo = 2.0 * texture3D(shader_noise_tex, position.xyz / 9.0) - 1.0;
return hi.r * cos(twopi * lo.r) + hi.a * sin(twopi * lo.r);
}
/* Multi-octave turbulent noise */
float
fbmturbulence(vec3 position, int octaves)
{
float m = 1.0;
vec3 p = position;
vec4 hi = vec4(0.0);
/* XXX Loops may not work correctly on all video cards */
for (int x = 0; x < octaves; x++) {
hi += abs(2.0 * texture3D(shader_noise_tex, p.xyz) - 1.0) * m;
p *= 2.0;
m *= 0.5;
}
vec4 lo = texture3D(shader_noise_tex, position.xyz / 9.0);
return 2.0 * mix(hi.r, hi.a, cos(twopi * lo.r) * 0.5 + 0.5) - 1.0;
}
'''
if __name__ == '__main__':
# Demo using a simple noise-textured rotating sphere
import shader
win = pyglet.window.Window(width=640, height=640, resizable=True, visible=False)
vert_shader = shader.VertexShader('stupid', '''
/* simple vertex shader that stores the vertex position in a varying
* for easy access by the frag shader
*/
varying vec3 position;
void main(void) {
position = gl_Vertex.xyz * 5.0;
gl_Position = ftransform();
}
''')
frag_shader = shader.FragmentShader('noise_test', shader_noise_glsl + '''
varying vec3 position;
void main(void) {
float v;
float a = atan(position.y, position.x);
float arc = 3.14159 / 3.0;
if (a > -arc && a < arc) {
v = pnoise(position) * 0.5 + 0.5;
} else if (a > arc && a < arc * 4.0) {
v = fbmnoise(position, 4) * 0.5 + 0.5;
} else {
v = fbmturbulence(position, 4) * 0.5 + 0.5;
}
gl_FragColor = vec4(v, v, v, 1.0);
}
''')
shader_prog = shader.ShaderProgram(vert_shader, frag_shader)
shader_prog.install()
tex = ShaderNoiseTexture()
tex.load()
tex.enable()
shader_prog.uset1I('shader_noise_tex', 0)
quadratic = gluNewQuadric()
gluQuadricNormals(quadratic, GLU_SMOOTH)
gluQuadricTexture(quadratic, GL_TRUE)
glEnable(GL_CULL_FACE)
global spin
spin = 0
def on_resize(width, height):
glViewport(0, 0, width, height)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
gluPerspective(70, 1.0*width/height, 0.1, 1000.0)
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
win.on_resize = on_resize
@win.event
def on_draw():
global spin
win.clear()
glLoadIdentity()
glTranslatef(0, 0, -1.5)
glRotatef(spin, 1.0, 1.0, 1.0)
gluSphere(quadratic, 0.65, 60, 60)
def update(dt):
global spin
spin += dt * 10.0
pyglet.clock.schedule_interval(update, 1.0/30.0)
win.set_visible()
pyglet.app.run()
|