1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
from typing import Union
from noiseprotocol.exceptions import NoiseMaxNonceError
from noiseprotocol.constants import Empty, TOKEN_E, TOKEN_S, TOKEN_EE, TOKEN_ES, TOKEN_SE, TOKEN_SS, TOKEN_PSK, MAX_NONCE
class CipherState(object):
"""
Implemented as per Noise Protocol specification - paragraph 5.1.
The initialize_key() function takes additional required argument - noise_protocol.
This class holds an instance of Cipher wrapper. It manages initialisation of underlying cipher function
with appropriate key in initialize_key() and rekey() methods.
"""
def __init__(self, noise_protocol):
self.k = Empty()
self.n = None
self.cipher = noise_protocol.cipher_class()
def initialize_key(self, key):
"""
:param key: Key to set within CipherState
"""
self.k = key
self.n = 0
if self.has_key():
self.cipher.initialize(key)
def has_key(self):
"""
:return: True if self.k is not an instance of Empty
"""
return not isinstance(self.k, Empty)
def set_nonce(self, nonce):
self.n = nonce
def encrypt_with_ad(self, ad: bytes, plaintext: bytes) -> bytes:
"""
If k is non-empty returns ENCRYPT(k, n++, ad, plaintext). Otherwise returns plaintext.
:param ad: bytes sequence
:param plaintext: bytes sequence
:return: ciphertext bytes sequence
"""
if self.n == MAX_NONCE:
raise NoiseMaxNonceError('Nonce has depleted!')
if not self.has_key():
return plaintext
ciphertext = self.cipher.encrypt(self.k, self.n, ad, plaintext)
self.n = self.n + 1
return ciphertext
def decrypt_with_ad(self, ad: bytes, ciphertext: bytes) -> bytes:
"""
If k is non-empty returns DECRYPT(k, n++, ad, ciphertext). Otherwise returns ciphertext. If an authentication
failure occurs in DECRYPT() then n is not incremented and an error is signaled to the caller.
:param ad: bytes sequence
:param ciphertext: bytes sequence
:return: plaintext bytes sequence
"""
if self.n == MAX_NONCE:
raise NoiseMaxNonceError('Nonce has depleted!')
if not self.has_key():
return ciphertext
plaintext = self.cipher.decrypt(self.k, self.n, ad, ciphertext)
self.n = self.n + 1
return plaintext
def rekey(self):
self.k = self.cipher.rekey(self.k)
self.cipher.initialize(self.k)
class SymmetricState(object):
"""
Implemented as per Noise Protocol specification - paragraph 5.2.
The initialize_symmetric function takes different required argument - noise_protocol, which contains protocol_name.
"""
def __init__(self):
self.h = None
self.ck = None
self.noise_protocol = None
self.cipher_state = None
@classmethod
def initialize_symmetric(cls, noise_protocol: 'NoiseProtocol') -> 'SymmetricState':
"""
Instead of taking protocol_name as an argument, we take full NoiseProtocol object, that way we have access to
protocol name and crypto functions
Comments below are mostly copied from specification.
:param noise_protocol: a valid NoiseProtocol instance
:return: initialised SymmetricState instance
"""
# Create SymmetricState
instance = cls()
instance.noise_protocol = noise_protocol
# If protocol_name is less than or equal to HASHLEN bytes in length, sets h equal to protocol_name with zero
# bytes appended to make HASHLEN bytes. Otherwise sets h = HASH(protocol_name).
if len(noise_protocol.name) <= noise_protocol.hash_fn.hashlen:
instance.h = noise_protocol.name.ljust(noise_protocol.hash_fn.hashlen, b'\0')
else:
instance.h = noise_protocol.hash_fn.hash(noise_protocol.name)
# Sets ck = h.
instance.ck = instance.h
# Calls InitializeKey(empty).
instance.cipher_state = CipherState(noise_protocol)
instance.cipher_state.initialize_key(Empty())
noise_protocol.cipher_state_handshake = instance.cipher_state
return instance
def mix_key(self, input_key_material: bytes):
"""
:param input_key_material:
:return:
"""
# Sets ck, temp_k = HKDF(ck, input_key_material, 2).
self.ck, temp_k = self.noise_protocol.hkdf(self.ck, input_key_material, 2)
# If HASHLEN is 64, then truncates temp_k to 32 bytes.
if self.noise_protocol.hash_fn.hashlen == 64:
temp_k = temp_k[:32]
# Calls InitializeKey(temp_k).
self.cipher_state.initialize_key(temp_k)
def mix_hash(self, data: bytes):
"""
Sets h = HASH(h + data).
:param data: bytes sequence
"""
self.h = self.noise_protocol.hash_fn.hash(self.h + data)
def mix_key_and_hash(self, input_key_material: bytes):
# Sets ck, temp_h, temp_k = HKDF(ck, input_key_material, 3).
self.ck, temp_h, temp_k = self.noise_protocol.hkdf(self.ck, input_key_material, 3)
# Calls MixHash(temp_h).
self.mix_hash(temp_h)
# If HASHLEN is 64, then truncates temp_k to 32 bytes.
if self.noise_protocol.hash_fn.hashlen == 64:
temp_k = temp_k[:32]
# Calls InitializeKey(temp_k).
self.cipher_state.initialize_key(temp_k)
def get_handshake_hash(self):
return self.h
def encrypt_and_hash(self, plaintext: bytes) -> bytes:
"""
Sets ciphertext = EncryptWithAd(h, plaintext), calls MixHash(ciphertext), and returns ciphertext. Note that if
k is empty, the EncryptWithAd() call will set ciphertext equal to plaintext.
:param plaintext: bytes sequence
:return: ciphertext bytes sequence
"""
ciphertext = self.cipher_state.encrypt_with_ad(self.h, plaintext)
self.mix_hash(ciphertext)
return ciphertext
def decrypt_and_hash(self, ciphertext: bytes) -> bytes:
"""
Sets plaintext = DecryptWithAd(h, ciphertext), calls MixHash(ciphertext), and returns plaintext. Note that if
k is empty, the DecryptWithAd() call will set plaintext equal to ciphertext.
:param ciphertext: bytes sequence
:return: plaintext bytes sequence
"""
plaintext = self.cipher_state.decrypt_with_ad(self.h, ciphertext)
self.mix_hash(ciphertext)
return plaintext
def split(self):
"""
Returns a pair of CipherState objects for encrypting/decrypting transport messages.
:return: tuple (CipherState, CipherState)
"""
# Sets temp_k1, temp_k2 = HKDF(ck, b'', 2).
temp_k1, temp_k2 = self.noise_protocol.hkdf(self.ck, b'', 2)
# If HASHLEN is 64, then truncates temp_k1 and temp_k2 to 32 bytes.
if self.noise_protocol.hash_fn.hashlen == 64:
temp_k1 = temp_k1[:32]
temp_k2 = temp_k2[:32]
# Creates two new CipherState objects c1 and c2.
# Calls c1.InitializeKey(temp_k1) and c2.InitializeKey(temp_k2).
c1, c2 = CipherState(self.noise_protocol), CipherState(self.noise_protocol)
c1.initialize_key(temp_k1)
c2.initialize_key(temp_k2)
if self.noise_protocol.handshake_state.initiator:
self.noise_protocol.cipher_state_encrypt = c1
self.noise_protocol.cipher_state_decrypt = c2
else:
self.noise_protocol.cipher_state_encrypt = c2
self.noise_protocol.cipher_state_decrypt = c1
self.noise_protocol.handshake_done()
# Returns the pair (c1, c2).
return c1, c2
class HandshakeState(object):
"""
Implemented as per Noise Protocol specification - paragraph 5.3.
The initialize() function takes different required argument - noise_protocol, which contains handshake_pattern.
"""
def __init__(self):
self.noise_protocol = None
self.symmetric_state = None
self.initiator = None
self.s = None
self.e = None
self.rs = None
self.re = None
self.message_patterns = None
@classmethod
def initialize(cls, noise_protocol: 'NoiseProtocol', initiator: bool, prologue: bytes=b'', s: '_KeyPair'=None,
e: '_KeyPair'=None, rs: '_KeyPair'=None, re: '_KeyPair'=None) -> 'HandshakeState':
"""
Constructor method.
Comments below are mostly copied from specification.
Instead of taking handshake_pattern as an argument, we take full NoiseProtocol object, that way we have access
to protocol name and crypto functions
:param noise_protocol: a valid NoiseProtocol instance
:param initiator: boolean indicating the initiator or responder role
:param prologue: byte sequence which may be zero-length, or which may contain context information that both
parties want to confirm is identical
:param s: local static key pair
:param e: local ephemeral key pair
:param rs: remote party’s static public key
:param re: remote party’s ephemeral public key
:return: initialized HandshakeState instance
"""
# Create HandshakeState
instance = cls()
instance.noise_protocol = noise_protocol
# Originally in specification:
# "Derives a protocol_name byte sequence by combining the names for
# the handshake pattern and crypto functions, as specified in Section 8."
# Instead, we supply the NoiseProtocol to the function. The protocol name should already be validated.
# Calls InitializeSymmetric(noise_protocol)
instance.symmetric_state = SymmetricState.initialize_symmetric(noise_protocol)
# Calls MixHash(prologue)
instance.symmetric_state.mix_hash(prologue)
# Sets the initiator, s, e, rs, and re variables to the corresponding arguments
instance.initiator = initiator
instance.s = s if s is not None else Empty()
instance.e = e if e is not None else Empty()
instance.rs = rs if rs is not None else Empty()
instance.re = re if re is not None else Empty()
# Calls MixHash() once for each public key listed in the pre-messages from handshake_pattern, with the specified
# public key as input (...). If both initiator and responder have pre-messages, the initiator’s public keys are
# hashed first
initiator_keypair_getter = instance._get_local_keypair if initiator else instance._get_remote_keypair
responder_keypair_getter = instance._get_remote_keypair if initiator else instance._get_local_keypair
for keypair in map(initiator_keypair_getter, noise_protocol.pattern.get_initiator_pre_messages()):
instance.symmetric_state.mix_hash(keypair.public_bytes)
for keypair in map(responder_keypair_getter, noise_protocol.pattern.get_responder_pre_messages()):
instance.symmetric_state.mix_hash(keypair.public_bytes)
# Sets message_patterns to the message patterns from handshake_pattern
instance.message_patterns = noise_protocol.pattern.tokens.copy()
return instance
def write_message(self, payload: Union[bytes, bytearray], message_buffer: bytearray):
"""
Comments below are mostly copied from specification.
:param payload: byte sequence which may be zero-length
:param message_buffer: buffer-like object
:return: None or result of SymmetricState.split() - tuple (CipherState, CipherState)
"""
# Fetches and deletes the next message pattern from message_patterns, then sequentially processes each token
# from the message pattern
message_pattern = self.message_patterns.pop(0)
for token in message_pattern:
if token == TOKEN_E:
# Sets e = GENERATE_KEYPAIR(). Appends e.public_key to the buffer. Calls MixHash(e.public_key)
self.e = self.noise_protocol.dh_fn.generate_keypair() if isinstance(self.e, Empty) else self.e
message_buffer += self.e.public_bytes
self.symmetric_state.mix_hash(self.e.public_bytes)
if self.noise_protocol.is_psk_handshake:
self.symmetric_state.mix_key(self.e.public_bytes)
elif token == TOKEN_S:
# Appends EncryptAndHash(s.public_key) to the buffer
message_buffer += self.symmetric_state.encrypt_and_hash(self.s.public_bytes)
elif token == TOKEN_EE:
# Calls MixKey(DH(e, re))
self.symmetric_state.mix_key(self.noise_protocol.dh_fn.dh(self.e.private, self.re.public))
elif token == TOKEN_ES:
# Calls MixKey(DH(e, rs)) if initiator, MixKey(DH(s, re)) if responder
if self.initiator:
self.symmetric_state.mix_key(self.noise_protocol.dh_fn.dh(self.e.private, self.rs.public))
else:
self.symmetric_state.mix_key(self.noise_protocol.dh_fn.dh(self.s.private, self.re.public))
elif token == TOKEN_SE:
# Calls MixKey(DH(s, re)) if initiator, MixKey(DH(e, rs)) if responder
if self.initiator:
self.symmetric_state.mix_key(self.noise_protocol.dh_fn.dh(self.s.private, self.re.public))
else:
self.symmetric_state.mix_key(self.noise_protocol.dh_fn.dh(self.e.private, self.rs.public))
elif token == TOKEN_SS:
# Calls MixKey(DH(s, rs))
self.symmetric_state.mix_key(self.noise_protocol.dh_fn.dh(self.s.private, self.rs.public))
elif token == TOKEN_PSK:
self.symmetric_state.mix_key_and_hash(self.noise_protocol.psks.pop(0))
else:
raise NotImplementedError('Pattern token: {}'.format(token))
# Appends EncryptAndHash(payload) to the buffer
message_buffer += self.symmetric_state.encrypt_and_hash(payload)
# If there are no more message patterns returns two new CipherState objects by calling Split()
if len(self.message_patterns) == 0:
return self.symmetric_state.split()
def read_message(self, message: Union[bytes, bytearray], payload_buffer: bytearray):
"""
Comments below are mostly copied from specification.
:param message: byte sequence containing a Noise handshake message
:param payload_buffer: buffer-like object
:return: None or result of SymmetricState.split() - tuple (CipherState, CipherState)
"""
# Fetches and deletes the next message pattern from message_patterns, then sequentially processes each token
# from the message pattern
dhlen = self.noise_protocol.dh_fn.dhlen
message_pattern = self.message_patterns.pop(0)
for token in message_pattern:
if token == TOKEN_E:
# Sets re to the next DHLEN bytes from the message. Calls MixHash(re.public_key).
self.re = self.noise_protocol.keypair_class.from_public_bytes(bytes(message[:dhlen]))
message = message[dhlen:]
self.symmetric_state.mix_hash(self.re.public_bytes)
if self.noise_protocol.is_psk_handshake:
self.symmetric_state.mix_key(self.re.public_bytes)
elif token == TOKEN_S:
# Sets temp to the next DHLEN + 16 bytes of the message if HasKey() == True, or to the next DHLEN bytes
# otherwise. Sets rs to DecryptAndHash(temp).
if self.noise_protocol.cipher_state_handshake.has_key():
temp = bytes(message[:dhlen + 16])
message = message[dhlen + 16:]
else:
temp = bytes(message[:dhlen])
message = message[dhlen:]
self.rs = self.noise_protocol.keypair_class.from_public_bytes(
self.symmetric_state.decrypt_and_hash(temp)
)
elif token == TOKEN_EE:
# Calls MixKey(DH(e, re)).
self.symmetric_state.mix_key(self.noise_protocol.dh_fn.dh(self.e.private, self.re.public))
elif token == TOKEN_ES:
# Calls MixKey(DH(e, rs)) if initiator, MixKey(DH(s, re)) if responder
if self.initiator:
self.symmetric_state.mix_key(self.noise_protocol.dh_fn.dh(self.e.private, self.rs.public))
else:
self.symmetric_state.mix_key(self.noise_protocol.dh_fn.dh(self.s.private, self.re.public))
elif token == TOKEN_SE:
# Calls MixKey(DH(s, re)) if initiator, MixKey(DH(e, rs)) if responder
if self.initiator:
self.symmetric_state.mix_key(self.noise_protocol.dh_fn.dh(self.s.private, self.re.public))
else:
self.symmetric_state.mix_key(self.noise_protocol.dh_fn.dh(self.e.private, self.rs.public))
elif token == TOKEN_SS:
# Calls MixKey(DH(s, rs))
self.symmetric_state.mix_key(self.noise_protocol.dh_fn.dh(self.s.private, self.rs.public))
elif token == TOKEN_PSK:
self.symmetric_state.mix_key_and_hash(self.noise_protocol.psks.pop(0))
else:
raise NotImplementedError('Pattern token: {}'.format(token))
# Calls DecryptAndHash() on the remaining bytes of the message and stores the output into payload_buffer.
payload_buffer += self.symmetric_state.decrypt_and_hash(bytes(message))
# If there are no more message patterns returns two new CipherState objects by calling Split()
if len(self.message_patterns) == 0:
return self.symmetric_state.split()
def _get_local_keypair(self, token: str) -> 'KeyPair':
keypair = getattr(self, token) # Maybe explicitly handle exception when getting improper keypair
if isinstance(keypair, Empty):
raise Exception('Required keypair {} is empty!'.format(token)) # Maybe subclassed exception
return keypair
def _get_remote_keypair(self, token: str) -> 'KeyPair':
keypair = getattr(self, 'r' + token) # Maybe explicitly handle exception when getting improper keypair
if isinstance(keypair, Empty):
raise Exception('Required keypair {} is empty!'.format('r' + token)) # Maybe subclassed exception
return keypair
|