1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
#!/usr/bin/python
import sys
import os
import unittest
import nss.nss as nss
#-------------------------------------------------------------------------------
verbose = False
mechanism = nss.CKM_DES_CBC_PAD
plain_text = "Encrypt me!"
key = "e8:a7:7c:e2:05:63:6a:31"
iv = "e4:bb:3b:d3:c3:71:2e:58"
in_filename = sys.argv[0]
chunk_size = 128
#-------------------------------------------------------------------------------
def setup_contexts(mechanism, key, iv):
# Get a PK11 slot based on the cipher
slot = nss.get_best_slot(mechanism)
# If key was supplied use it, otherwise generate one
if key:
if verbose:
print "using supplied key data"
print "key:\n%s" % (key)
key_si = nss.SecItem(nss.read_hex(key))
sym_key = nss.import_sym_key(slot, mechanism, nss.PK11_OriginUnwrap,
nss.CKA_ENCRYPT, key_si)
else:
if verbose:
print "generating key data"
sym_key = slot.key_gen(mechanism, None, slot.get_best_key_length(mechanism))
# If initialization vector was supplied use it, otherwise set it to None
if iv:
if verbose:
print "supplied iv:\n%s" % (iv)
iv_data = nss.read_hex(iv)
iv_si = nss.SecItem(iv_data)
iv_param = nss.param_from_iv(mechanism, iv_si)
else:
iv_length = nss.get_iv_length(mechanism)
if iv_length > 0:
iv_data = nss.generate_random(iv_length)
iv_si = nss.SecItem(iv_data)
iv_param = nss.param_from_iv(mechanism, iv_si)
if verbose:
print "generated %d byte initialization vector: %s" % \
(iv_length, nss.data_to_hex(iv_data, separator=":"))
else:
iv_param = None
# Create an encoding context
encoding_ctx = nss.create_context_by_sym_key(mechanism, nss.CKA_ENCRYPT,
sym_key, iv_param)
# Create a decoding context
decoding_ctx = nss.create_context_by_sym_key(mechanism, nss.CKA_DECRYPT,
sym_key, iv_param)
return encoding_ctx, decoding_ctx
#-------------------------------------------------------------------------------
class TestCipher(unittest.TestCase):
def setUp(self):
nss.nss_init_nodb()
self.encoding_ctx, self.decoding_ctx = setup_contexts(mechanism, key, iv)
def tearDown(self):
del self.encoding_ctx
del self.decoding_ctx
nss.nss_shutdown()
def test_string(self):
if verbose:
print "Plain Text:\n%s" % (plain_text)
# Encode the plain text by feeding it to cipher_op getting cipher text back.
# Append the final bit of cipher text by calling digest_final
cipher_text = self.encoding_ctx.cipher_op(plain_text)
cipher_text += self.encoding_ctx.digest_final()
if verbose:
print "Cipher Text:\n%s" % (nss.data_to_hex(cipher_text, separator=":"))
# Decode the cipher text by feeding it to cipher_op getting plain text back.
# Append the final bit of plain text by calling digest_final
decoded_text = self.decoding_ctx.cipher_op(cipher_text)
decoded_text += self.decoding_ctx.digest_final()
if verbose:
print "Decoded Text:\n%s" % (decoded_text)
# Validate the encryption/decryption by comparing the decoded text with
# the original plain text, they should match.
self.assertEqual(decoded_text, plain_text)
self.assertNotEqual(cipher_text, plain_text)
def test_file(self):
encrypted_filename = os.path.basename(in_filename) + ".encrypted"
decrypted_filename = os.path.basename(in_filename) + ".decrypted"
in_file = open(in_filename, "r")
encrypted_file = open(encrypted_filename, "w")
if verbose:
print "Encrypting file \"%s\" to \"%s\"" % (in_filename, encrypted_filename)
# Encode the data read from a file in chunks
while True:
# Read a chunk of data until EOF, encrypt it and write the encrypted data
in_data = in_file.read(chunk_size)
if len(in_data) == 0: # EOF
break
encrypted_data = self.encoding_ctx.cipher_op(in_data)
encrypted_file.write(encrypted_data)
# Done encoding the input, get the final encoded data, write it, close files
encrypted_data = self.encoding_ctx.digest_final()
encrypted_file.write(encrypted_data)
in_file.close()
encrypted_file.close()
# Decode the encoded file in a similar fashion
if verbose:
print "Decrypting file \"%s\" to \"%s\"" % (encrypted_filename, decrypted_filename)
encrypted_file = open(encrypted_filename, "r")
decrypted_file = open(decrypted_filename, "w")
while True:
# Read a chunk of data until EOF, encrypt it and write the encrypted data
in_data = encrypted_file.read(chunk_size)
if len(in_data) == 0: # EOF
break
decrypted_data = self.decoding_ctx.cipher_op(in_data)
decrypted_file.write(decrypted_data)
# Done encoding the input, get the final encoded data, write it, close files
decrypted_data = self.decoding_ctx.digest_final()
decrypted_file.write(decrypted_data)
encrypted_file.close()
decrypted_file.close()
# Validate the encryption/decryption by comparing the decoded text with
# the original plain text, they should match.
in_data = open(in_filename).read()
encrypted_data = open(encrypted_filename).read()
decrypted_data = open(decrypted_filename).read()
if decrypted_data != in_data:
result = 1
print "FAILED! decrypted_data != in_data"
if encrypted_data == in_data:
result = 1
print "FAILED! encrypted_data == in_data"
# clean up
os.unlink(encrypted_filename)
os.unlink(decrypted_filename)
#-------------------------------------------------------------------------------
if __name__ == '__main__':
unittest.main()
|