File: des.py

package info (click to toggle)
python-ntlm-auth 1.5.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 236 kB
  • sloc: python: 1,323; makefile: 3
file content (370 lines) | stat: -rw-r--r-- 13,009 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# Copyright: (c) 2018, Jordan Borean (@jborean93) <jborean93@gmail.com>
# MIT License (see LICENSE or https://opensource.org/licenses/MIT)

import struct


# lots of help from
# http://page.math.tu-berlin.de/~kant/teaching/hess/krypto-ws2006/des.htm
class DES(object):

    # first table used to derive the sub keys
    _pc1 = [
        56, 48, 40, 32, 24, 16, 8,
        0, 57, 49, 41, 33, 25, 17,
        9, 1, 58, 50, 42, 34, 26,
        18, 10, 2, 59, 51, 43, 35,
        62, 54, 46, 38, 30, 22, 14,
        6, 61, 53, 45, 37, 29, 21,
        13, 5, 60, 52, 44, 36, 28,
        20, 12, 4, 27, 19, 11, 3
    ]

    # shifts the sub key from pc1 to calculate the 16 sub keys
    _shift_indexes = [1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1]

    # second table used to derive the sub keys
    _pc2 = [
        13, 16, 10, 23, 0, 4,
        2, 27, 14, 5, 20, 9,
        22, 18, 11, 3, 25, 7,
        15, 6, 26, 19, 12, 1,
        40, 51, 30, 36, 46, 54,
        29, 39, 50, 44, 32, 47,
        43, 48, 38, 55, 33, 52,
        45, 41, 49, 35, 28, 31
    ]

    # initial permutation of the 64-bits of the message data
    _ip = [
        57, 49, 41, 33, 25, 17, 9, 1,
        59, 51, 43, 35, 27, 19, 11, 3,
        61, 53, 45, 37, 29, 21, 13, 5,
        63, 55, 47, 39, 31, 23, 15, 7,
        56, 48, 40, 32, 24, 16, 8, 0,
        58, 50, 42, 34, 26, 18, 10, 2,
        60, 52, 44, 36, 28, 20, 12, 4,
        62, 54, 46, 38, 30, 22, 14, 6
    ]

    # used to expand the each initial permuted half into a 48-bit values
    _e_bit_selection = [
        31, 0, 1, 2, 3, 4,
        3, 4, 5, 6, 7, 8,
        7, 8, 9, 10, 11, 12,
        11, 12, 13, 14, 15, 16,
        15, 16, 17, 18, 19, 20,
        19, 20, 21, 22, 23, 24,
        23, 24, 25, 26, 27, 28,
        27, 28, 29, 30, 31, 0
    ]

    # list of boxes used in the encryption process
    _s_boxes = [
        [
            14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
            0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
            4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
            15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
        ],
        [
            15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
            3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
            0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
            13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
        ],
        [
            10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
            13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
            13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
            1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
        ],
        [
            7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
            13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
            10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
            3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
        ],
        [
            2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
            14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
            4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
            11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
        ],
        [
            12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
            10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
            9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
            4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
        ],
        [
            4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
            13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
            1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
            6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
        ],
        [
            13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
            1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
            7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
            2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
        ]
    ]

    # converts the s-box permutation one more time
    _p = [
        15, 6, 19, 20, 28, 11,
        27, 16, 0, 14, 22, 25,
        4, 17, 30, 9, 1, 7,
        23, 13, 31, 26, 2, 8,
        18, 12, 29, 5, 21, 10,
        3, 24
    ]

    # final permutation of the message
    _final_ip = [
        39, 7, 47, 15, 55, 23, 63, 31,
        38, 6, 46, 14, 54, 22, 62, 30,
        37, 5, 45, 13, 53, 21, 61, 29,
        36, 4, 44, 12, 52, 20, 60, 28,
        35, 3, 43, 11, 51, 19, 59, 27,
        34, 2, 42, 10, 50, 18, 58, 26,
        33, 1, 41, 9, 49, 17, 57, 25,
        32, 0, 40, 8, 48, 16, 56, 24
    ]

    def __init__(self, key):
        """
        Creates a DES cipher class with the key initialised. This key must be
        8 bytes in length. This only supports the ECB cipher mode as that is
        what is used in the LM hash calculation.

        :param key: The 8-byte key to use in the Cipher
        """
        if len(key) != 8:
            raise ValueError("DES encryption key should be 8 bytes in length")

        self.key = key
        self._subkeys = self._create_subkeys(self.key)

    def encrypt(self, data, pad=True):
        """
        DES encrypts the data based on the key it was initialised with.

        :param data: The bytes string to encrypt
        :param pad: Whether to right pad data with \x00 to a multiple of 8
        :return: The encrypted bytes string
        """
        encrypted_data = b""
        for i in range(0, len(data), 8):
            block = data[i:i + 8]
            block_length = len(block)
            if block_length != 8 and pad:
                block += b"\x00" * (8 - block_length)
            elif block_length != 8:
                raise ValueError("DES encryption must be a multiple of 8 "
                                 "bytes")
            encrypted_data += self._encode_block(block)

        return encrypted_data

    def decrypt(self, data):
        """
        DES decrypts the data based on the key it was initialised with.

        :param data: The encrypted bytes string to decrypt
        :return: The decrypted bytes string
        """
        decrypted_data = b""
        for i in range(0, len(data), 8):
            block = data[i:i + 8]
            block_length = len(block)
            if block_length != 8:
                raise ValueError("DES decryption must be a multiple of 8 "
                                 "bytes")

            decrypted_data += self._decode_block(block)

        return decrypted_data

    @staticmethod
    def key56_to_key64(key):
        """
        This takes in an a bytes string of 7 bytes and converts it to a bytes
        string of 8 bytes with the odd parity bit being set to every 8 bits,

        For example

        b"\x01\x02\x03\x04\x05\x06\x07"
        00000001 00000010 00000011 00000100 00000101 00000110 00000111

        is converted to

        b"\x01\x80\x80\x61\x40\x29\x19\x0E"
        00000001 10000000 10000000 01100001 01000000 00101001 00011001 00001110

        https://crypto.stackexchange.com/questions/15799/des-with-actual-7-byte-key

        :param key: 7-byte string sized key
        :return: 8-byte string with the parity bits sets from the 7-byte string
        """
        if len(key) != 7:
            raise ValueError("DES 7-byte key is not 7 bytes in length, "
                             "actual: %d" % len(key))

        new_key = b""
        for i in range(0, 8):
            if i == 0:
                new_value = struct.unpack("B", key[i:i+1])[0]
            elif i == 7:
                new_value = struct.unpack("B", key[6:7])[0]
                new_value = (new_value << 1) & 0xFF
            else:
                new_value = struct.unpack("B", key[i - 1:i])[0]
                next_value = struct.unpack("B", key[i:i + 1])[0]
                new_value = ((new_value << (8 - i)) & 0xFF) | next_value >> i

            # clear the last bit so the count isn't off
            new_value = new_value & ~(1 << 0)

            # set the last bit if the number of set bits are even
            new_value = new_value | int(not DES.bit_count(new_value) & 0x1)
            new_key += struct.pack("B", new_value)

        return new_key

    @staticmethod
    def bit_count(i):
        # counts the number of bits that are 1 in the integer
        count = 0
        while i:
            i &= i - 1
            count += 1

        return count

    def _create_subkeys(self, key):
        # convert the key into a list of bits
        key_bits = self._get_bits(key)

        # reorder the bits based on the pc1 table
        pc1_bits = [key_bits[x] for x in self._pc1]

        # split the table into 2 and append to the first entry
        c = [pc1_bits[0:28]]
        d = [pc1_bits[28:56]]

        # now populate the remaining blocks by shifting the values
        for i, shift_index in enumerate(self._shift_indexes):
            c.append(self._shift_bits(c[i], shift_index))
            d.append(self._shift_bits(d[i], shift_index))

        subkeys = list()
        for i in range(1, 17):
            cd = c[i] + d[i]
            subkey_bits = [cd[x] for x in self._pc2]
            subkeys.append(subkey_bits)

        return subkeys

    def _shift_bits(self, bits, shifts):
        new_bits = [None] * 28
        for i in range(28):
            shift_index = i + shifts
            if shift_index >= 28:
                shift_index = shift_index - 28
            new_bits[i] = bits[shift_index]

        return new_bits

    def _get_bits(self, data):
        bits = []
        for i in range(len(data)):
            b = struct.unpack("B", data[i:i + 1])[0]
            bits.append(1 if b & 0x80 else 0)
            bits.append(1 if b & 0x40 else 0)
            bits.append(1 if b & 0x20 else 0)
            bits.append(1 if b & 0x10 else 0)
            bits.append(1 if b & 0x08 else 0)
            bits.append(1 if b & 0x04 else 0)
            bits.append(1 if b & 0x02 else 0)
            bits.append(1 if b & 0x01 else 0)
        return bits

    def _encode_block(self, block):
        block_bits = self._get_bits(block)
        lr = [block_bits[x] for x in self._ip]

        l = [lr[0:32]]
        r = [lr[32:64]]
        for i in range(16):
            computed_block = self._compute_block(r[i], self._subkeys[i])
            new_r = [int(computed_block[k] != l[i][k]) for k in range(32)]

            l.append(r[i])
            r.append(new_r)

        # apply the final permutation on the l and r bits backwards
        rl = r[16] + l[16]
        encrypted_bits = [rl[x] for x in self._final_ip]
        encrypted_bytes = b""
        for i in range(0, 64, 8):
            i_byte = int("".join([str(x) for x in encrypted_bits[i:i + 8]]), 2)
            encrypted_bytes += struct.pack("B", i_byte)

        return encrypted_bytes

    def _decode_block(self, block):
        block_bits = self._get_bits(block)
        rl = [None] * 64
        for i, idx in enumerate(self._final_ip):
            rl[idx] = block_bits[i]

        r = [None] * 17
        l = [None] * 17
        r[16] = rl[0:32]
        l[16] = rl[32:64]
        for i in range(15, -1, -1):
            computed_block = self._compute_block(l[i + 1], self._subkeys[i])
            new_l = [int(computed_block[k] != r[i + 1][k]) for k in range(32)]
            r[i] = l[i + 1]
            l[i] = new_l

        lr = l[0] + r[0]
        decrypted_bits = [None] * 64
        for i, idx in enumerate(self._ip):
            decrypted_bits[idx] = lr[i]

        decrypted_bytes = b""
        for i in range(0, 64, 8):
            i_byte = int("".join([str(x) for x in decrypted_bits[i:i + 8]]), 2)
            decrypted_bytes += struct.pack("B", i_byte)

        return decrypted_bytes

    def _compute_block(self, block, key):
        expanded_block = [block[x] for x in self._e_bit_selection]
        new_block = [int(key[i] != expanded_block[i]) for i in range(48)]

        # calculate with the s-boxes
        s_box_perm = []
        s_box_iter = 0
        # now go through each block (8 groups of 6 bits) and run the s-boxes
        for i in range(0, 48, 6):
            current_block = new_block[i:i + 6]
            row_bits = [str(current_block[0]), str(current_block[-1])]
            column_bits = [str(x) for x in current_block[1:-1]]

            s_box_row = int("".join(row_bits), 2)
            s_box_column = int("".join(column_bits), 2)
            s_box_address = (s_box_row * 16) + s_box_column
            s_box_value = self._s_boxes[s_box_iter][s_box_address]
            s_box_iter += 1

            s_box_perm.append(1 if s_box_value & 0x8 else 0)
            s_box_perm.append(1 if s_box_value & 0x4 else 0)
            s_box_perm.append(1 if s_box_value & 0x2 else 0)
            s_box_perm.append(1 if s_box_value & 0x1 else 0)

        final_block = [s_box_perm[x] for x in self._p]
        return final_block