File: numarraycore.py

package info (click to toggle)
python-numarray 1.1.1-3
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 7,428 kB
  • ctags: 8,469
  • sloc: ansic: 92,018; python: 20,861; makefile: 263; sh: 13
file content (1549 lines) | stat: -rw-r--r-- 54,146 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
"""numarray: The big enchilada numeric module

"""
import sys as _sys
import types, math, os.path
import operator as _operator
import copy as _copy
import warnings as _warnings
from math import pi, e

import memory
import generic as _gen
import _bytes
import _numarray
import _ufunc
import _sort
import numerictypes as _nt

_PROTOTYPE = 0  # Set to 1 to switch to Python prototype code.
                # Set to 0 to inherit C code from C basetype.

# rename built-in function type so not to conflict with keyword
_type = type

MAX_LINE_WIDTH = None
PRECISION = None
SUPPRESS_SMALL = None

PyINT_TYPES = {
    bool: 1,
    int: 1,
    long: 1,
    }

PyREAL_TYPES = {
    bool: 1,
    int: 1,
    long: 1,
    float: 1,
    }

# Python numeric types with values indicating level in type hierarchy
PyNUMERIC_TYPES = {
    bool: 0,
    int: 1,
    long: 2,
    float: 3,
    complex: 4
    }

# Mapping back from level to type
PyLevel2Type = {}
for key, value in PyNUMERIC_TYPES.items():
    PyLevel2Type[value] = key
del key, value

# Mapping from Python to Numeric types
Py2NumType = {
    bool:  _nt.Bool,
    int:   _nt.Long,
    long:  _nt.Int64,
    float: _nt.Float,
    complex: _nt.Complex
    }

def array2list(arr):
    return arr.tolist()

# array factory functions

def _all_arrays(args):
    for x in args:
        if not isinstance(x, NumArray):
            return 0
    return len(args) > 0

def _maxtype(args):
    """Find the maximum scalar numeric type in the arguments.
    
    An exception is raised if the types are not python numeric types.
    """
    if not len(args):
        return None
    elif isinstance(args, NumArray):
        return args.type()    
    elif _all_arrays(args):
        temp = args[0].type()
        for x in args[1:]:
            if temp < x.type():
                temp = x.type()
        if isinstance(temp, _nt.BooleanType):
            return bool
        elif isinstance(temp, _nt.IntegralType):
            return int
        elif isinstance(temp, _nt.FloatingType):
            return float
        elif isinstance(temp, _nt.ComplexType):
            return complex
    else:
        return PyLevel2Type[_numarray._maxtype(args)]

def _storePyValueInBuffer(buffer, Ctype, index, value):
    """Store a python value in a buffer, index is in element units, not bytes"""
    # Do not use for complex scalars!
    Ctype._conv.fromPyValue(value, buffer._data,
                            index*Ctype.bytes, Ctype.bytes, 0)

def _storePyValueListInBuffer(buffer, Ctype, valuelist):
    # Do not use for complex values!
    for i in xrange(len(valuelist)):
        _storePyValueInBuffer(buffer, Ctype, i, valuelist[i])

def _fillarray(size, start, delta, type=None):
    ptype = _maxtype((start, delta))
    if ptype == long:
        ptype = _nt.Int64
    elif PyINT_TYPES.has_key(ptype):
        ptype = _nt.Long
    elif PyREAL_TYPES.has_key(ptype):
        ptype = _nt.Float
    else:
        ptype = _nt.Complex
    if type:
        outtype = _nt.getType(type)
        if (isinstance(ptype, _nt.ComplexType)
            and not isinstance( outtype, _nt.ComplexType)):
            raise TypeError("outtype must be a complex type")
    else:
        outtype = ptype
        
    if outtype > ptype: # Hack for Int64/UInt64 on 32-bit platforms.
        ptype = outtype
        
    if isinstance(outtype, _nt.ComplexType):
        # Not memory efficient at the moment
        real = _fillarray(size, complex(start).real, complex(delta).real,
                type = _realtype(ptype))
        image = _fillarray(size, complex(start).imag, complex(delta).imag,
                type = _realtype(ptype))
        outarr = NumArray((size,), outtype, real=real, imag=image)
    else:
        # save parameters in a buffer
        parbuffer = ufunc._bufferPool.getBuffer()
        _storePyValueListInBuffer(parbuffer, ptype, [start, delta])
        cfunction = _sort.functionDict[repr((ptype.name, 'fillarray'))]
        outarr = NumArray((size,), outtype)
        if ptype == outtype:
            # no conversion necessary, simple case
            _ufunc.CheckFPErrors()
            cfunction(size, 1, 1, ((outarr._data, 0), (parbuffer._data, 0)))
            errorstatus = _ufunc.CheckFPErrors()
            if errorstatus:
                ufunc.handleError(errorstatus, " in fillarray")
        else:
            # use buffer loop
            convbuffer = ufunc._bufferPool.getBuffer()
            convfunction = ptype._conv.astype[outtype.name]
            bsize = len(convbuffer._data)/ptype.bytes
            iters, lastbsize = divmod(size, bsize)
            _ufunc.CheckFPErrors()

            outoff = 0
            for i in xrange(iters + (lastbsize>0)):
                if i == iters:
                    bsize = lastbsize
                cfunction(bsize, 1, 1,
                          ((convbuffer._data, 0), (parbuffer._data, 0)))
                convfunction(bsize, 1, 1, 
                             ((convbuffer._data, 0), (outarr._data, outoff)))
                outoff += bsize*outtype.bytes
                start += delta * bsize
                _storePyValueListInBuffer(parbuffer, ptype, [start, delta])
            errorstatus = _ufunc.CheckFPErrors()
            if errorstatus:
                ufunc.handleError(errorstatus, " in fillarray")
    return outarr

def _frontseqshape(seq):
    """Find the length of all the first elements, return as a list"""
    if not len(seq):
        return (0,)
    if isinstance(seq, types.StringType):
        return (len(seq),)
    try:
        shape = []
        while 1:
            shape.append(len(seq))
            try:
                seq = seq[0]
                if isinstance(seq, types.StringType):
                    return shape
            except IndexError:
                return shape
    except TypeError:
        return shape
    except ValueError:
        if isinstance(seq, NumArray) and seq.rank == 0:
            return shape

def fromlist(seq, type=None, shape=None, check_overflow=0, typecode=None):
    """fromlist creates a NumArray from  the sequence 'seq' which must be
    a list or tuple of python numeric types.  If type is specified, it
    is as the type of  the resulting NumArray.  If shape is specified,
    it becomes the  shape of the result and must  have the same number
    of elements as seq.
    """
    type = _typeFromTypeAndTypecode(type, typecode)
    if not len(seq) and type is None:
        type = _nt.Long

    if _all_arrays(seq):
        a = _gen.concatenate(seq)
        if shape is not None:
            a.shape = shape
        else:
            a.shape = (len(seq),a._shape[0]/len(seq)) + a._shape[1:]
        if type is not None and a.type() != type:
            a = a.astype(type)
        return a
        
    if type is None:
        highest_type = _maxtype(seq)
        
    tshape = _frontseqshape(seq)
    if shape is not None and _gen.product(shape) != _gen.product(tshape):
        raise ValueError("shape incompatible with sequence")
    ndim = len(tshape)
    if ndim <= 0:
        raise TypeError("Argument must be a sequence")
    if type is None:
        type = Py2NumType.get(highest_type)
    if type is None:
        raise TypeError("Cannot create array of type %s" % highest_type.__name__)
    tshape = tuple(tshape)
    arr = NumArray(shape=tshape, type=type)
    arr._check_overflow = check_overflow
    arr.fromlist(seq)
    # _numarray._setarray(arr, seq)
    if shape is not None:
        arr.setshape(shape)
    arr._check_overflow = 0
    return arr

def _typeFromTypeAndTypecode(type, typecode):
    """returns a type object from a type or typecode specifier (keyword)
    or returns the type() of any sequence which is an NDArray.
    """
    if type is not None and typecode is not None and type != typecode:
        raise ValueError("Can't define both 'type' and 'typecode' for an array.")
    elif type is not None:              # Still might be a string or typecode
        return _nt.getType(type)
    elif typecode is not None:
        return _nt.getType(typecode)
    else:
        return None
    
def getTypeObject(sequence, type, typecode):
    """getTypeObject computes the typeObject for 'sequence' if both 'type' and
    'typecode' are unspecified.  Otherwise,  it returns the typeObject specified by
    'type' or 'typecode'.
    """
    rtype = _typeFromTypeAndTypecode(type, typecode)
    if rtype is not None:
        return rtype
    elif isinstance(sequence, _gen.NDArray):  # handle array([])
        return sequence.type()
    elif hasattr(sequence, "typecode"): # for Numeric/MA
        return sequence.typecode()
    elif (isinstance(sequence, (types.ListType, types.TupleType)) and
          len(sequence) == 0):
        return _nt.Long
    else:
        if isinstance(sequence, (types.IntType, types.LongType,
                                 types.FloatType, types.ComplexType)):
            sequence = [sequence]
        try:
            return Py2NumType[ _maxtype(sequence) ]
        except KeyError:
            raise TypeError("Can't determine a reasonable type from sequence")

def array(sequence=None, typecode=None, copy=1, savespace=0,
          type=None, shape=None):
    """array() constructs a NumArray by calling NumArray, one of its
    factory functions (fromstring, fromfile, fromlist), or by making a
    copy of an existing array.  If copy=0, array() will create a new
    array only if

    sequence             specifies the contents or storage for the array

    type and typecode    are interchangeable and define the array type
                         using either a type object or string.

    copy                  when sequence is an array, copy determines
                          whether a copy or the original is returned.

    savespace            is ignored by numarray.
    
    shape                defines the shape of the array object and is
                         necessary when not implied by the sequence
                         parameter.
    """
    if sequence is None and shape is None:
        return None

    if isinstance(shape, types.IntType):
        shape = (shape,)
        
    if sequence is None and (shape is None or type is None):
        raise ValueError("Must define shape and type if sequence is None")
    
    if isinstance(sequence, _gen.NDArray):
        if type is None and typecode is None:
            if copy:
                a = sequence.copy()
            else:
                a = sequence
        else:
            type = getTypeObject(sequence, type, typecode)
            if not copy and type is sequence.type():
                a = sequence
            else:
                a = sequence.astype(type) # make a re-typed copy
        if shape is not None:
            a.setshape(shape)
        return a

    type = getTypeObject(sequence, type, typecode) 
        
    if sequence is None or _gen.SuitableBuffer(sequence):
        return NumArray(buffer=sequence, shape=shape, type=type)
    elif isinstance(sequence, types.StringType):
        return fromstring(sequence, shape=shape, type=type)
    elif isinstance(sequence, (types.ListType, types.TupleType)):
        return fromlist(sequence, type, shape)
    elif PyNUMERIC_TYPES.has_key(_type(sequence)):
        if shape and shape != ():
            raise ValueError("Only shape () is valid for a rank 0 array.")
        return fromlist([sequence], shape=(), type=type or
                        Py2NumType[_type(sequence)])
    elif isinstance(sequence, types.FileType):
        return fromfile(sequence, type=type, shape=shape)
    else:
        try:
            return sequence.__array__(type)
        except AttributeError:
            try:
                sequence[0]
            except:
                raise ValueError("Unknown input type")
            else:
                return fromlist(sequence, type, shape)

def asarray(seq, type=None, typecode=None):
    """converts scalars, lists and tuples to numarray if possible.

    passes NumArrays thru making copies only to convert types.
    """
    if isinstance(seq, _gen.NDArray) and type is None and typecode is None:
        return seq
    return array(seq, type=type, typecode=typecode, copy=0)

inputarray = asarray   # Obsolete synonym

def fromstring(datastring, type=None, shape=None, typecode=None):
    """Create an array from binary data contained in a string (by copying)"""
    type = _typeFromTypeAndTypecode(type, typecode)
    if not shape:
        size, rem = divmod(len(datastring), type.bytes)
        if rem:
            raise ValueError("Type size inconsistent with string length")
        else:
            shape = (size,) # default to a 1-d array
    elif _type(shape) is types.IntType:
        shape = (shape,)
    if len(datastring) != (_gen.product(shape)*type.bytes):
        raise ValueError("Specified shape and type inconsistent with string length")
    arr = NumArray(shape=shape, type=type)
    strbuff = buffer(datastring)
    nelements = arr.nelements()
    # Currently uses only the byte-by-byte copy, should be optimized to use
    # larger element copies when possible.
    cfunc = _bytes.functionDict["copyNbytes"]
    cfunc((nelements,), strbuff, 0, (type.bytes,),
          arr._data, 0, (type.bytes,), type.bytes)
    if arr._type == _nt.Bool:
        arr = ufunc.not_equal(arr, 0)
    return arr

def fromfile(file, type, shape=None):
    """Create an array from binary file data

    If file is a string then that file is opened, else it is assumed
    to be a file object. No options at the moment, all file positioning
    must be done prior to this function call with a file object

    """
    type = _nt.getType(type)
    name =  0
    if _type(file) == _type(""):
        name = 1
        file = open(file, 'rb')
    size = os.path.getsize(file.name) - file.tell()
    if not shape:
        nelements, rem = divmod(size, type.bytes)
        if rem:
            raise ValueError(
                "Type size inconsistent with shape or remaining bytes in file")
        shape = (nelements,)
    elif _type(shape) is types.IntType:
        shape=(shape,)
    nbytes = _gen.product(shape)*type.bytes
    if nbytes > size:
        raise ValueError(
                "Not enough bytes left in file for specified shape and type")
    # create the array
    arr = NumArray(shape=shape, type=type)
    # Use of undocumented file method! XXX
    nbytesread = file.readinto(arr._data)
    if nbytesread != nbytes:
        raise IOError("Didn't read as many bytes as expected")
    if name:
        file.close()
    if arr._type == _nt.Bool:
        arr = ufunc.not_equal(arr, 0)
    return arr

class UsesOpPriority(object):
    """Classes can subclass from UsesOpPriority to signal to numarray
    that perhaps the class' r-operator hook (e.g. __radd__) should be
    given preference over NumArray's l-operator hook (e.g. __add__).
    This would be done so that when different object types are used in
    an operation (e.g. NumArray + MaskedArray) the type of the result
    is well defined and independent of the order of the operands
    (e.g. MaskedArray).

    Before altering the "normal" behavior of an operator, this scheme
    (implemented in the operator hook functions of NumArray) first
    checks to see if the other operand subclasses UsesOpPriority.  If
    it does, the op priorities of both operands are compared, and an
    appropriate hook function from the one with the highest priority
    is called.

    Thus, a subclass of NumArray which wants to ensure that its type
    dominates in mixed type operations should define a class level
    op_priority > 0.  If several subclasses wind up doing this,
    op_priority will determine how they relate to one another as well.
    """
    op_priority = 0.0

class NumArray(_numarray._numarray, _gen.NDArray, UsesOpPriority):
    """Fundamental Numeric Array
    
    type       The type of each data element, e.g. Int32  
    byteorder  The actual ordering of bytes in buffer: "big" or "little".
    """
    if _PROTOTYPE:
        def __init__(self, shape=None, type=None, buffer=None,
                     byteoffset=0, bytestride=None, byteorder=_sys.byteorder,
                     aligned=1, real=None, imag=None):
            type = _nt.getType(type)
            itemsize = type.bytes
            _gen.NDArray.__init__(self, shape, itemsize, buffer,
                                  byteoffset, bytestride)
            self._type = type
            if byteorder in ["little", "big"]:
                self._byteorder = byteorder
            else:
                raise ValueError("byteorder must be 'little' or 'big'")
            if real is not None:
                self.real = real
            if imag is not None:
                self.imag = imag

        def _copyFrom(self, arr):
            """Copy elements from another array.

            This overrides the _generic NDArray version
            """
            # Test for simple case first
            if isinstance(arr, NumArray):
                if (arr.nelements() == 0 and self.nelements() == 0):
                    return
                if (arr._type == self._type and
                    self._shape == arr._shape and
                    arr._byteorder == self._byteorder and
                    _gen.product(arr._strides) != 0 and
                    arr.isaligned() and self.isaligned()):
                    name = 'copy'+`self._itemsize`+'bytes'
                    cfunc = ( _bytes.functionDict.get(name) or
                              _bytes.functionDict["copyNbytes"])
                    cfunc(self._shape, arr._data,  arr._byteoffset,  arr._strides,
                          self._data, self._byteoffset, self._strides,
                          self._itemsize)
                    return
            elif PyNUMERIC_TYPES.has_key(_type(arr)):
                # Convert scalar to a one element array for broadcasting
                arr = array([arr])
            else:
                raise TypeError('argument is not array or number')
            barr = self._broadcast(arr)
            ufunc._copyFromAndConvert(barr, self)

        def view(self):
            """Returns a new array object which refers to the same data as the
            original array.  The new array object can be manipulated (reshaped,
            restrided, new attributes, etc.) without affecting the original array.
            Modifications of the array data *do* affect the original array.
            """
            v = _gen.NDArray.view(self)
            v._type = self._type
            v._byteorder = self._byteorder
            return v

    def __del__(self):
        if self._shadows != None:
            self._shadows._copyFrom(self)
            self._shadows = None
 
    def __getstate__(self):
        """returns state of NumArray for pickling."""
        # assert not hasattr(self, "_shadows") # Not a good idea for pickling.
        state = _gen.NDArray.__getstate__(self)
        state["_byteorder"] = self._byteorder
        state["_type"]      = self._type.name
        return state

    def __setstate__(self, state):
        """sets state of NumArray after unpickling."""
        _gen.NDArray.__setstate__(self, state)
        self._byteorder = state["_byteorder"]
        self._type      = _nt.getType(state["_type"])

    def _put(self, indices, values, **keywds):
        ufunc._put(self, indices, values, **keywds)

    def _take(self, indices, **keywds):
        return ufunc._take(self, indices, **keywds)

    def getreal(self):
        if isinstance(self._type, _nt.ComplexType):
            t = _realtype(self._type)
            arr = NumArray(self._shape, t, buffer=self._data,
                           byteoffset=self._byteoffset,
                           bytestride=self._bytestride,
                           byteorder=self._byteorder)
            arr._strides = self._strides[:]
            return arr
        elif isinstance(self._type, _nt.FloatingType):
            return self
        else:
            return self.astype(_nt.Float64)            

    def setreal(self, value):
        if isinstance(self._type, (_nt.ComplexType, _nt.FloatingType)):
            self.getreal()[:] = value
        else:
            raise TypeError("Can't setreal() on a non-floating-point array")
                    
    real = property(getreal, setreal,
                    doc="real component of a non-complex numarray")

    def getimag(self):
        if isinstance(self._type, _nt.ComplexType):
            t = _realtype(self._type)
            arr = NumArray(self._shape, t, buffer=self._data,
                           byteoffset=self._byteoffset+t.bytes,
                           bytestride=self._bytestride,
                           byteorder=self._byteorder)
            arr._strides = self._strides[:]
            return arr
        else:
            zeros = self.new(_nt.Float64)
            zeros[:] = 0.0
            return zeros

    def setimag(self, value):
        if isinstance(self._type, _nt.ComplexType):
            self.getimag()[:] = value
        else:
            raise TypeError("Can't set imaginary component of a non-comlex type")

    imag = property(getimag, setimag,
                        doc="imaginary component of complex array")

    real = property(getreal, setreal,
                        doc="real component of complex array")

    setimaginary = setimag
    getimaginary = getimag
    imaginary = imag

    def conjugate(self):
        """Returns the conjugate a - bj of complex array a + bj."""
        a = self.copy()
        ufunc.minus(a.getimag(), a.getimag())
        return a

    def togglebyteorder(self):
        """reverses the state of the _byteorder attribute:  little <-> big."""
        self._byteorder = {"little":"big","big":"little"}[self._byteorder]

    def byteswap(self):
        """Byteswap data in place, leaving the _byteorder attribute untouched.
        """
        if self._itemsize == 1:
            return
        if isinstance(self._type, _nt.ComplexType):
            fname = "byteswap" + self._type.name
        else:
            fname = "byteswap"+str(self._itemsize)+"bytes"
            
        cfunc = _bytes.functionDict[fname]
        cfunc(self._shape, 
              self._data, self._byteoffset, self._strides,
              self._data, self._byteoffset, self._strides)
        
    _byteswap = byteswap  # alias to keep old code working.

    def byteswapped(self):
        """returns a byteswapped copy of self, with adjusted _byteorder."""
        b = self.copy()
        b._byteswap()
        return b
        
    def info(self):
        """info() prints out the key attributes of a numarray."""
        _gen.NDArray.info(self)
        print "byteorder:", self._byteorder
        print "byteswap:", self.isbyteswapped()
        print "type:", repr(self._type)

    def astype(self, type=None):
        """Return a copy of the array converted to the given type"""
        if type is None:
            type = self._type
        type = _nt.getType(type)
        if type == self._type:
            # always return a copy even if type is same
            return self.copy()
        if type._conv:
            retarr = self.__class__(buffer=None, shape=self._shape, type=type)
            if retarr.nelements() == 0:
                return retarr
            if self.is_c_array():
                _ufunc.CheckFPErrors()
                cfunc = self._type._conv.astype[type.name]
                cfunc(self.nelements(), 1, 1,
                      ((self._data, self._byteoffset), (retarr._data, 0)))
                errorstatus = _ufunc.CheckFPErrors()
                if errorstatus:
                    ufunc.handleError(errorstatus, " during type conversion")
            else:
                ufunc._copyFromAndConvert(self, retarr)
        elif type.fromtype:
            retarr = type.fromtype(self)
        else:
            raise TypeError("Don't know how to convert from %s to %s" %
                            (self._type.name, type.name))
        return retarr

    def __tonumtype__(self, type):
        """__tonumtype__ supports C-API NA_setFromPythonScalar permitting a rank-0
        array to be used in lieu of a numerical scalar value."""
        if self.rank != 0:
            raise ValueError("Can't use non-rank-0 array as a scalar.")
        if type is not self.type():
            s = self.astype(type)
        else:
            s = self
        return s[()]

    def is_c_array(self):
        """returns 1 iff an array is c-contiguous, aligned, and not
        byteswapped."""
        return (self.iscontiguous() and self.isaligned() and not
                self.isbyteswapped()) != 0

    def is_f_array(self):
        """returns 1 iff an array is fortan-contiguous, aligned, and not
        byteswapped."""
        return (self.is_fortran_contiguous() and self.isaligned() and not
                self.isbyteswapped())

    def new(self, type=None):
        """Return a new array of given type with same shape as this array

        Note this only creates the array; it does not copy the data.
        """
        if type is None:
            type = self._type
        return self.__class__(shape=self._shape, type=type)
        
    def type(self):
        """Return the type object for the array"""
        return self._type

    def copy(self):
        """Returns a native byte order copy of the array."""
        c = _gen.NDArray.copy(self)
        c._byteorder = self._byteorder
        c._type = self._type
        if self.isbyteswapped():
            c.byteswap()
            c.togglebyteorder()
        return c

    def _stdtype(self, t):
        return t in [_nt.Long, _nt.Float, _nt.Complex]

    def __str__(self):
        return array_str(self)

    def __repr__(self):
        return array_repr(self)

    def __int__(self):
        if len(self._shape) == 0:
            return int(self[()])
        else:
            raise TypeError, "Only rank-0 numarray can be cast to integers."

    def __float__(self):
        if len(self._shape) == 0:
            return float(self[()])
        else:
            raise TypeError, "Only rank-0 numarray can be cast to floats."

    def __complex__(self):
        if len(self._shape) == 0:
            return complex(self[()])
        else:
            raise TypeError, "Only rank-0 numarray can be cast to complex."

    def __abs__(self): return ufunc.abs(self)
    def __neg__(self): return ufunc.minus(self)
    def __invert__(self): return ufunc.bitwise_not(self)
    def __pos__(self): return self
    
    def __add__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__radd__(self)
        else:
            return ufunc.add(self, operand)
    
    def __radd__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__add__(self)
        else:
            r = ufunc.add(operand, self)
            if isinstance(r, NumArray):
                r.__class__ = self.__class__
            return r

    def __sub__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__rsub__(self)
        else:
            return ufunc.subtract(self, operand)
    
    def __rsub__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__sub__(self)
        else:
            r = ufunc.subtract(operand, self)
            if isinstance(r, NumArray):
                r.__class__ = self.__class__
            return r

    def __mul__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__rmul__(self)
        else:
            return ufunc.multiply(self, operand)
    
    def __rmul__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__mul__(self)
        else:
            r = ufunc.multiply(operand, self)
            if isinstance(r, NumArray):
                r.__class__ = self.__class__
            return r

    def __div__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__rdiv__(self)
        else:
            return ufunc.divide(self, operand)
    
    def __truediv__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__rtruediv__(self)
        else:
            return ufunc.true_divide(self, operand)
    
    def __floordiv__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__rfloordiv__(self)
        else:
            return ufunc.floor_divide(self, operand)
    
    def __rdiv__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__div__(self)
        else:
            r = ufunc.divide(operand, self)
            if isinstance(r, NumArray):
                r.__class__ = self.__class__
            return r

    def __rtruediv__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__truediv__(self)
        else:
            r = ufunc.true_divide(operand, self)
            if isinstance(r, NumArray):
                r.__class__ = self.__class__
            return r

    def __rfloordiv__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__floordiv__(self)
        else:
            r = ufunc.floor_divide(operand, self)
            if isinstance(r, NumArray):
                r.__class__ = self.__class__
            return r

    def __mod__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__rmod__(self)
        else:
            return ufunc.remainder(self, operand)
    
    def __rmod__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__mod__(self)
        else:
            r = ufunc.remainder(operand, self)
            if isinstance(r, NumArray):
                r.__class__ = self.__class__
            return r

    def __divmod__(self,operand):
        """returns the tuple (self/operand, self%operand)."""
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__rdivmod__(self)
        else:
            return ufunc.divide_remainder(self, operand)

    def __rdivmod__(self,operand):
        """returns the tuple (operand/self, operand%self)."""
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__divmod__(self)
        else:
            r = ufunc.divide_remainder(operand, self)
            if isinstance(r, NumArray):
                r.__class__ = self.__class__
            return r

    def __pow__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__rpow__(self)
        else:
            return ufunc.power(self, operand)
    
    def __rpow__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__pow__(self)
        else:
            r = ufunc.power(operand, self)
            if isinstance(r, NumArray):
                r.__class__ = self.__class__
            return r

    def __and__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__rand__(self)
        else:
            return ufunc.bitwise_and(self, operand)
    
    def __rand__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__and__(self)
        else:
            r = ufunc.bitwise_and(operand, self)
            if isinstance(r, NumArray):
                r.__class__ = self.__class__
            return r

    def __or__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__ror__(self)
        else:
            return ufunc.bitwise_or(self, operand)
    
    def __ror__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__or__(self)
        else:
            r = ufunc.bitwise_or(operand, self)
            if isinstance(r, NumArray):
                r.__class__ = self.__class__
            return r

    def __xor__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__rxor__(self)
        else:
            return ufunc.bitwise_xor(self, operand)
    
    def __rxor__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__xor__(self)
        else:
            r = ufunc.bitwise_xor(operand, self)
            if isinstance(r, NumArray):
                r.__class__ = self.__class__
            return r

    def __rshift__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__rrshift__(self)
        else:
            return ufunc.rshift(self, operand)
    
    def __rrshift__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__rshift__(self)
        else:
            r = ufunc.rshift(operand, self)
            if isinstance(r, NumArray):
                r.__class__ = self.__class__
            return r

    def __lshift__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__rlshift__(self)
        else:
            return ufunc.lshift(self, operand)
    
    def __rlshift__(self, operand):
        if (isinstance(operand, UsesOpPriority) and
            self.op_priority < operand.op_priority):
            return operand.__lshift__(self)
        else:
            r = ufunc.lshift(operand, self)
            if isinstance(r, NumArray):
                r.__class__ = self.__class__
            return r

    # augmented assignment operators

    def __iadd__(self, operand):
        ufunc.add(self, operand, self)
        return self
    
    def __isub__(self, operand):
        ufunc.subtract(self, operand, self)
        return self
    
    def __imul__(self, operand):
        ufunc.multiply(self, operand, self)
        return self
    
    def __idiv__(self, operand):
        ufunc.divide(self, operand, self)
        return self
    
    def __ifloordiv__(self, operand):
        ufunc.floor_divide(self, operand, self)
        return self
    
    def __itruediv__(self, operand):
        ufunc.true_divide(self, operand, self)
        return self
    
    def __imod__(self, operand):
        ufunc.remainder(self, operand, self)
        return self
    
    def __ipow__(self, operand):
        ufunc.power(self, operand, self)
        return self
    
    def __iand__(self, operand):
        ufunc.bitwise_and(self, operand, self)
        return self
    
    def __ior__(self, operand):
        ufunc.bitwise_or(self, operand, self)
        return self
    
    def __ixor__(self, operand):
        ufunc.bitwise_xor(self, operand, self)
        return self
    
    def __irshift__(self, operand):
        ufunc.rshift(self, operand, self)
        return self
    
    def __ilshift__(self, operand):
        ufunc.lshift(self, operand, self)
        return self

    # rich comparisons (only works in Python 2.1 and later)

    def __lt__(self, operand):
        if isinstance(self._type, _nt.ComplexType):
            raise TypeError("Complex numarray don't support < comparison")
        else:
            return ufunc.less(self, operand)
        
    def __gt__(self, operand):
        if isinstance(self._type, _nt.ComplexType):
            raise TypeError("Complex numarray don't support > comparison")
        else:
            return ufunc.greater(self, operand)

    def __le__(self, operand):
        if isinstance(self._type, _nt.ComplexType):
            raise TypeError("Complex numarray don't support <= comparison")
        else:
            return ufunc.less_equal(self, operand)

    def __ge__(self, operand):
        if isinstance(self._type, _nt.ComplexType):
            raise TypeError("Complex numarray don't support >= comparison")
        else:
            return ufunc.greater_equal(self, operand)

    def __eq__(self, operand):
        if operand is None:
            return 0
        else:
            return ufunc.equal(self, operand)
    def __ne__(self, operand):
        if operand is None:
            return 1
        else:
            return ufunc.not_equal(self, operand)

    def sort(self, axis=-1):
        """sorts an array in-place along the specified axis, returning None."""
        if axis==-1:
            ufunc._sortN(self)
        else:
            self.swapaxes(axis,-1)
            ufunc._sortN(self)
            self.swapaxes(axis,-1)

    def _argsort(self, axis=-1):
        if axis==-1:
            ashape = self.getshape()
            w = array(shape=ashape, type=_nt.Long)
            w[...,:] = arange(ashape[-1], type=_nt.Long)
            ufunc._argsortN(self,w)
            return w
        else:
            self.swapaxes(axis,-1)
            w = self._argsort()
            w.swapaxes(axis, -1)
            return w

    def argsort(self, axis=-1):
        """returns the indices of 'self' which if taken from self would return
        a copy of 'self' sorted along the specified 'axis'"""
        return self.copy()._argsort(axis)

    def argmax(self, axis=-1):
        """returns the index(es) of the greatest element(s) of 'self' along the
        specified 'axis'."""
        import numeric
        return numeric.argmax(self, axis)

    def argmin(self, axis=-1):
        """returns the index(es) of the least element(s) of 'self' along the
        specified 'axis'."""
        import numeric
        return numeric.argmin(self, axis)

    def diagonal(self, *args, **keywords):
        """returns the diagonal elements of the array."""
        return diagonal(self, *args, **keywords)

    def trace(self, *args, **keywords):
        """returns the sum of the diagonal elements of the array."""
        return trace(self, *args, **keywords)

    def typecode(self):
        """returns the Numeric typecode of the array."""
        return _nt.typecode[self._type]

    def min(self):
        """Returns the minimum element in the array."""
        return ufunc.minimum.reduce(ufunc.minimum.areduce(self).flat)

    def max(self):
        """Returns the maximum element in the array."""
        return ufunc.maximum.reduce(ufunc.maximum.areduce(self).flat)

    def sum(self, type=None):
        """Returns the sum of all elements in the array."""
        if type is None:
            type = _nt.MaximumType(self._type)
        return ufunc.add.reduce(ufunc.add.areduce(self, type=type).flat, type=type)

    def mean(self):
        """Returns the average of all elements in the array."""
        return self.sum()/(self.nelements()*1.0)

    def stddev(self):
        """Returns the standard deviation of the array."""
        m = self.mean()
        N = self.nelements()
        return math.sqrt(((self - m)**2).sum()/(N-1))

    def spacesaver(self):
        """Always False.  Supported for Numeric compatibility."""
        return 0

class ComplexArray(NumArray):   # Deprecated
    pass

def Complex32_fromtype(arr):
    """Used for converting other types to Complex32.

    This is used to set an fromtype attribute of the ComplexType objects"""
    rarr = arr.astype(Float32)
    retarr = ComplexArray(arr._shape, _nt.Complex32)
    retarr.getreal()[:] = rarr
    retarr.getimag()[:] = 0.
    return retarr

def Complex64_fromtype(arr):
    """Used for converting other types to Complex64.

    This is used to set an fromtype attribute of the ComplexType objects"""
    rarr = arr.astype(Float64)
    retarr = ComplexArray(arr._shape, _nt.Complex64)
    retarr.getreal()[:] = rarr
    retarr.getimag()[:] = 0.
    return retarr

# Check whether byte order is big endian or little endian.

from sys import byteorder
isBigEndian = (byteorder == "big")
del byteorder

# Add fromtype function to Complex types

_nt.Complex32.fromtype = Complex32_fromtype
_nt.Complex64.fromtype = Complex64_fromtype

# Return type of complex type components

def _isComplexType(type):  # Deprecated
    return type in [_nt.Complex32, _nt.Complex64]

def _realtype(complextype):
    if complextype == _nt.Complex32:
        return _nt.Float32
    else:
        return _nt.Float64

def conjugate(a):
    """conjugate(a) returns the complex conjugate of 'a'"""
    a = asarray(a)
    if not isinstance(a._type, _nt.ComplexType):
        a = a.astype(_nt.Complex64)
    return a.conjugate()

def zeros(shape, type=None, typecode=None):
    """Constructs a zero filled array of the specified shape and type."""
    type = _typeFromTypeAndTypecode(type, typecode)
    if type is None:
        type = _nt.Long
    retarr = NumArray(shape=shape, type=type)
    retarr._data.clear()
    return retarr

def ones(shape, type=None, typecode=None):
    """Constructs an array of the specified shape and type filled with ones."""
    type = _typeFromTypeAndTypecode(type, typecode)
    shape = _gen.getShape(shape)
    retarr = _fillarray(_gen.product(shape), 1, 0, type)
    retarr.setshape(shape)
    return retarr

def arange(a1, a2=None, stride=1, type=None, shape=None, typecode=None):
    """Returns an array of numbers in sequence over the specified range."""
    # Return empty range of correct type for single negative paramter.
    type = _typeFromTypeAndTypecode(type, typecode)
    if not isinstance(a1, types.ComplexType) and a1 < 0 and a2 is None:
        t = __builtins__["type"](a1)
        return zeros(shape=(0,), type=Py2NumType[t])
    if a2 == None:
        start = 0 + (0*a1) # to make it same type as stop
        stop  = a1
    else:
        start = a1 +(0*a2)
        stop  = a2
    delta = (stop-start)/stride ## xxx int divide issue
    if _type(delta) == types.ComplexType:
        # xxx What make sense here?
        size = int(math.ceil(delta.real))
    else:
        size = int(math.ceil((stop-start)/float(stride)))
    if size < 0:
        size = 0
    r = _fillarray(size, start, stride, type)
    if shape is not None:
        r.setshape(shape)
    return r

arrayrange = arange  # alias arange as arrayrange.

def identity(n, type=None, typecode=None):
    """Returns an array resembling and identity matrix."""
    type = _typeFromTypeAndTypecode(type, typecode)
    a = zeros(shape=(n,n), type=type)
    i = arange(n)
    a.put((i, i), 1, axis=(0,))
    return a

if _PROTOTYPE:
    def dot(array1, array2):
        """dot matrix-multiplies array1 by array2.
        """
        return ufunc.innerproduct(array1, _gen.swapaxes(array2, -1, -2))
else:
    from _numarray import dot

matrixmultiply = dot  # Deprecated in Numeric

def outerproduct(array1, array2):
    """outerproduct(array1, array2) computes the NxM outerproduct of N vector
    'array1' and M vector 'array2', where result[i,j] = array1[i]*array2[j].
    """
    array1=_gen.reshape(asarray(array1), (-1,1))  # ravel array1 into an Nx1
    array2=_gen.reshape(asarray(array2), (1,-1))  # ravel array2 into a 1xM
    return matrixmultiply(array1,array2)   # return NxM result

def allclose (array1, array2, rtol=1.e-5, atol=1.e-8): # From Numeric 20.3
    """allclose returns true if all components of array1 and array2 are
    equal subject to given tolerances.  The relative error rtol must be
    positive and << 1.0.  The absolute error atol comes into play for those
    elements of y that are very small or zero; it says how small x must be
    also.
    """
    x, y = asarray(array1), asarray(array2)
    d = ufunc.less(ufunc.abs(x-y), atol + rtol * ufunc.abs(y))
    return bool(alltrue(_gen.ravel(d)))

# JC's revised diagonal for supporting dimensions > 2 correctly.
def diagonal(a, offset= 0, axis1=0, axis2=1):
    """diagonal(a, offset=0, axis1=0, axis2=1) returns the given diagonals
    defined by the last two dimensions of the array.
    """
    a = inputarray(a)
    ###  do not swap axis1 and axis2, so the offset sign is meaningful
    ###if axis2 < axis1: axis1, axis2 = axis2, axis1
    ###if axis2 > 1:
    if 1: ###
        new_axes = range(len(a._shape))
        ###del new_axes[axis2]; del new_axes[axis1]
        try: ###
            new_axes.remove(axis1)  ###
            new_axes.remove(axis2)  ###
        except: ###
            raise ValueError, "axis1(=%d) and axis2(=%d) must be different and within range." % (axis1, axis2) ###
        ###new_axes [0:0] = [axis1, axis2]
        new_axes = new_axes + [axis1, axis2] ### insert at the end, not the beginning
        a = _gen.transpose(a, new_axes)
    s = a._shape
    rank = len(s) ###
    if rank == 2: ###
        n1 = s[0]
        n2 = s[1]
        n = n1 * n2
        s = (n,)
        a = _gen.reshape(a, s)
        if offset < 0:
            return _gen.take(a, range(- n2 * offset, min(n2, n1+offset) *
                                      (n2+1) - n2 * offset, n2+1), axis=0)
        else:
            return _gen.take(a, range(offset, min(n1, n2-offset) *
                                      (n2+1) + offset, n2+1), axis=0)
    else :
        my_diagonal = []
        for i in range(s[0]):
            my_diagonal.append(diagonal(a[i], offset, rank-3, rank-2)) ###
        return array(my_diagonal)

# From Numeric-21.0
def trace(array, offset=0, axis1=0, axis2=1):
    """trace returns the sum along diagonals (defined by the last
    two dimenions) of the array.
    """
    return ufunc.add.reduce(diagonal(array, offset, axis1, axis2))

def rank(array):
    """rank returns the number of dimensions in an array."""
    return len(shape(array))

def shape(array):
    """shape returns the shape tuple of an array."""
    try:
        return array.shape
    except AttributeError:
        return asarray(array).getshape()

def size(array, axis=None):
    """size  returns the number of elements in an array or
    along the specified axis."""
    array = asarray(array)
    if axis is None:
        return array.nelements()
    else:
        s = array.shape
        if axis < 0:
            axis += len(s)
        return s[axis]

def array_str(array, max_line_width=MAX_LINE_WIDTH, precision=PRECISION,
              suppress_small=SUPPRESS_SMALL):
    """Formats and array as a string."""
    array = asarray(array)
    return arrayprint.array2string(
        array, max_line_width, precision, suppress_small, ' ', "")

def array_repr(array, max_line_width=MAX_LINE_WIDTH, precision=PRECISION,
               suppress_small=SUPPRESS_SMALL):
    """Returns the repr string of an array."""
    array = asarray(array)
    lst = arrayprint.array2string(
        array, max_line_width, precision, suppress_small, ', ', "array(")
    typeless = array._stdtype(array._type)
    if array.__class__ is not NumArray:
        cName= array.__class__.__name__
    else:
        cName = "array"
    if typeless and not hasattr(array, "_explicit_type"):
        return cName + "(%s)" % lst
    else:
        return cName + "(%s, type=%s)" % (lst, array._type.name)

def around(array, digits=0, output=None):
    """rounds 'array'  to 'digits' of precision, storing the result in
    'output', or returning the result as new array if output=None"""
    array = asarray(array)
    scale = 10.0**digits
    if output is None:
        wout = array.copy()
    else:
        wout = output
    if digits != 0:
        wout *= scale  # bug in 2.2.1 and earlier causes fail as bad sequence op
    ufunc._round(wout, wout)
    if digits != 0:
        wout /= scale
    if output is None:
        return wout

def round(*args, **keys):
    _warnings.warn("round() is deprecated.  Switch to around().",
                   DeprecationWarning)
    return ufunc._round(*args, **keys)

def explicit_type(x):
    """explicit_type(x) returns a view of x which will always show it's type in it's repr.
    This is useful when the same test is run in two places, one where the type used *is* the
    default and hence not normally repr'ed, and one where the type used *is not* the default
    and so is displayed.
    """
    y = x.view()
    y._explicit_type = 1
    return y

ArrayType = NumArray  # Alias for backwards compatability with Numeric

def array_equiv(array1, array2):

    """array_equiv returns True if 'a' and 'b' are shape consistent
    (mutually broadcastable) and have all elements equal and False
    otherwise."""
    
    try:
        array1, array2 = asarray(array1), asarray(array2)
    except TypeError:
        return 0
    if not isinstance(array1, NumArray) or not isinstance(array2, NumArray):
        return 0
    try:
        array1, array2 = array1._dualbroadcast(array2)
    except ValueError:
        return 0
    return ufunc.logical_and.reduce(_gen.ravel(array1 == array2))

def array_equal(array1, array2):
    
    """array_equal returns True if array1 and array2 have identical shapes
    and all elements equal and False otherwise."""

    try:
        array1, array2 = asarray(array1), asarray(array2)
    except TypeError:
        return 0
    if not isinstance(array1, NumArray) or not isinstance(array2, NumArray):
        return 0
    if array1._shape != array2._shape:
        return 0
    return ufunc.logical_and.reduce(_gen.ravel(array1 == array2))


class _UBuffer(NumArray):
    """_UBuffer is used to hold a single "block" of ufunc data during
    the block-wise processing of all elements in an array.

    Subclassing the buffer object from numnumarray simplifies (and speeds!)
    their usage at the C level.  They are not intended to be used as
    public array objects, hence they are private!
    """

    def __init__(self, pybuffer):
        NumArray.__init__(self, (len(pybuffer),), _nt.Int8, pybuffer)
        self._strides    = None   # how it is distinguished from a real array

    def isbyteswapped(self):           return 0    
    def isaligned(self):               return 1
    def iscontiguous(self):            return 1
    def is_c_array(self):              return 1
    def _getByteOffset(self, shape):   return 0
    
    def __del__(self):
        """On deletion return the data to the buffer pool"""
        if self._data is not None:
            if ufunc is not None and ufunc._bufferPool is not None:
                ufunc._bufferPool.buffers.append(self._data)

    def __repr__(self):
        return "<_UBuffer of size:%d>" % self.shape[0]

import ufunc
import arrayprint

sum = ufunc.add.reduce
cumsum = ufunc.add.accumulate
product = ufunc.multiply.reduce
cumproduct = ufunc.multiply.accumulate
absolute = ufunc.abs  
negative = ufunc.minus
fmod = ufunc.remainder

def alltrue(array, axis=0):
    """For 1D arrays, returns True IFF all the elements of the array are nonzero.
    For higher dimensional arrays, returns a reduction.
    """
    array = asarray(array)
    if array.rank == 0:
        return array[()] == 1
    else:
        return ufunc.logical_and.reduce(array, axis=axis)
    
def sometrue(array, axis=0):
    """For 1D arrays, returns True IFF any one of the elements of the array is nonzero.
    For higher dimensional arrays, returns a reduction.
    """
    array = asarray(array)
    if array.rank == 0:
        return array[()] == 1
    else:
        return ufunc.logical_or.reduce(array, axis=axis)
        

NewArray = NumArray  # unnecessary following merger of real/complex Arrays 

def tensormultiply(array1, array2):
    """tensormultiply returns the product for any rank >=1 arrays, defined as:

    r_{xxx, yyy} = \sum_k array1_{xxx, k} array2_{k, yyyy}

    where xxx, yyy denote the rest of the a and b dimensions.
    """
    array1, array2 = asarray(array1), asarray(array2)
    if array1.shape[-1] != array2.shape[0]:
        raise ValueError, "Unmatched dimensions"
    shape = array1.shape[:-1] + array2.shape[1:]
    return _gen.reshape(dot(_gen.reshape(array1, (-1, array1.shape[-1])),
                            _gen.reshape(array2, (array2.shape[0], -1))), shape)

def kroneckerproduct(a,b):
	'''Computes a otimes b where otimes is the Kronecker product operator.
	
	Note: the Kronecker product is also known as the matrix direct product
	or tensor product.  It is defined as follows for 2D arrays a and b
	where shape(a)=(m,n) and shape(b)=(p,q):
	c = a otimes b  => cij = a[i,j]*b  where cij is the ij-th submatrix of c.
	So shape(c)=(m*p,n*q).

	>>> print kroneckerproduct([[1,2]],[[3],[4]])
	[[3 6]
	 [4 8]]
	>>> print kroneckerproduct([[1,2]],[[3,4]])
	[ [3 4 6 8]]
	>>> print kroneckerproduct([[1],[2]],[[3],[4]])
	[[3]
	 [4]
	 [6]
	 [8]]
	'''
	a, b = asarray(a), asarray(b)
	if not (len(shape(a))==2 and len(shape(b))==2):
        	raise ValueError, 'Input must be 2D arrays.'
	if not a.iscontiguous():
		a = _gen.reshape(a, a.shape)
	if not b.iscontiguous():
		b = _gen.reshape(b, b.shape)
	o = outerproduct(a,b)
	o.shape = a.shape + b.shape
	return _gen.concatenate(_gen.concatenate(o, axis=1), axis=1)