File: numerictypes.py

package info (click to toggle)
python-numarray 1.1.1-3
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 7,428 kB
  • ctags: 8,469
  • sloc: ansic: 92,018; python: 20,861; makefile: 263; sh: 13
file content (463 lines) | stat: -rw-r--r-- 13,933 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
"""numerictypes: Define the numeric type objects

This module is designed so 'from numerictypes import *' is safe.
Exported symbols include:

  Dictionary with all registered number types (including aliases):
    typeDict

  Numeric type objects:
    Bool
    Int8 Int16 Int32 Int64
    UInt8 UInt16 UInt32 UInt64
    Float32 Double64
    Complex32 Complex64

  Numeric type classes:
    NumericType
      BooleanType
      SignedType
      UnsignedType
      IntegralType
        SignedIntegralType
        UnsignedIntegralType
      FloatingType
      ComplexType

$Id: numerictypes.py,v 1.35.2.1 2004/11/16 23:02:37 jaytmiller Exp $
"""

MAX_ALIGN = 8
MAX_INT_SIZE = 8

from typeconv import typeConverters as _typeConverters
import types as _types
import numinclude
import copy as _copy

#XXX RLW thoughts:
#XXX
#XXX Another useful attribute might be `pythontype', which would tell what
#XXX the corresponding native Python type is for the numeric type.

typeDict = {}      # Contains all registered numeric types with aliases

def IsType(rep):
    """Determines whether the given object or string, 'rep', represents
    a numarray type."""
    return isinstance(rep, NumericType) or typeDict.has_key(rep)

def _register(name, type, force=0):
    """Register the type object.  Raise an exception if it is already registered
    unless force is true.
    """
    if typeDict.has_key(name) and not force:
        raise ValueError("Type %s has already been registered" % name)
    typeDict[name] = type
    return type


class NumericType:

    """Numeric type class

    Used both as a type identification and the repository of
    characteristics and conversion functions.
    """

    def __init__(self, name, bytes, default):
        self.name = name
        self.bytes = bytes
        self.default = default
        # The following attribute is a hook to provide new add on types
        # a way of converting from standard types to their type. If the
        # the usual lookup for a c function that does the conversions is
        # not found, then an attempt will be made to see if this attribute
        # is set, and if it is, call it as a conversion function. Complex
        # numarray are handled this way since there are no C functions that
        # do their conversions. The attribute is set in the module that
        # defines the NumArray subclass.
        self.fromtype = None
        try:
            self._conv = _typeConverters[name]
        except KeyError:
            self._conv = None
        _register(self.name, self)

    def __str__(self):
        return self.name

    def __repr__(self):
        return self.name

    def __hash__(self):
        """Allow type & name to be used interchangeably as dict key"""
        return hash(self.name)

    def __cmp__(self, other):
        if isinstance(other, _types.StringType):
            other = typeDict.get(other)
        if other is None:
            return 1  # 1 ==> False
        elif hasattr(self, "name") and hasattr(other, "name"):
            return (genericTypeRank.index(self.name) - 
                    genericTypeRank.index(other.name))
        else:
            return 0

class BooleanType(NumericType):
    """Boolean type (distinct so we can use mask numarray as subscripts)"""
    def __init__(self):
        NumericType.__init__(self, "Bool", 1, 1)

class SignedType(NumericType):
    """Marker class used for signed type check"""
    pass

class UnsignedType(NumericType):
    """Marker class used for unsigned type check"""
    pass

class IntegralType(NumericType):
    """Integral numeric type"""
    def __init__(self, bytes, root="Int"):
        assert bytes in [1, 2, 4, 8]
        NumericType.__init__(self, "%s%d" % (root, 8*bytes), bytes, 0)

class SignedIntegralType(IntegralType, SignedType):
    """Signed integer type"""
    pass

class UnsignedIntegralType(IntegralType, UnsignedType):
    """Unsigned integer type"""
    def __init__(self, bytes, root="UInt"):
        IntegralType.__init__(self, bytes, root)

class FloatingType(NumericType):
    """Floating-point type"""
    def __init__(self, bytes, root="Float"):
        assert bytes in [4, 8]
        NumericType.__init__(self, "%s%d" % (root, 8*bytes), bytes, 0.0)

class ComplexType(NumericType):
    """Complex type (XXX may want to make complex a subclass of Numeric array)"""
    def __init__(self, bytes, root="Complex"):
        assert bytes in [8, 16]
        NumericType.__init__(self, "%s%d" % (root, 4*bytes), bytes, complex(0.0))

class AnyType(NumericType):
    def __init__(self):
        self.name = "Any"
        self.bytes = None
        self.default = None
        self._conv = None
        _register("Any", self)

class ObjectType(NumericType):
    def __init__(self):
        self.name = "Object"
        self.bytes = None
        self.default = None
        self._conv = None
        _register("Object", self)

# C-API Type Any

Any = AnyType()
Object = ObjectType()
    
# Numeric Types:
Bool  = BooleanType()
Int8  = SignedIntegralType(1)
Int16 = SignedIntegralType(2)
Int32 = SignedIntegralType(4)
Int64 = SignedIntegralType(8)
    
Float32   = FloatingType(4)
Float64  = FloatingType(8)

UInt8  = UnsignedIntegralType(1)
UInt16 = UnsignedIntegralType(2)
UInt32 = UnsignedIntegralType(4)
UInt64 = UnsignedIntegralType(8)

Complex32  = ComplexType(8)
Complex64 = ComplexType(16)

# Aliases

Byte = _register("Byte",   Int8)
Short = _register("Short",  Int16)
Int = _register("Int",    Int32)
if numinclude.LP64:
    Long = _register("Long", Int64)
    if numinclude.hasUInt64:
        _register("ULong",  UInt64)
    # MaybeLong = _register("MaybeLong", Int64)  # XXXXXX
else:
    Long = _register("Long", Int32)
    _register("ULong",  UInt32)
    # MaybeLong = _register("MaybeLong", Int32)  # XXXXXX

MaybeLong = _register("MaybeLong", Int32) # XXXXX until arraybase.h enabled.

_register("UByte",  UInt8)
_register("UShort", UInt16)
_register("UInt",   UInt32)
Float = _register("Float",  Float64)
Complex = _register("Complex",  Complex64)

# short forms

_register("b1", Bool)
_register("u1", UInt8)
_register("u2", UInt16)
_register("u4", UInt32)
_register("i1", Int8)
_register("i2", Int16)
_register("i4", Int32)

_register("i8", Int64)
if numinclude.hasUInt64:
    _register("u8", UInt64)
    
_register("f4", Float32)
_register("f8", Float64)
_register("c8", Complex32)
_register("c16", Complex64)

# NumPy forms

_register("1", Int8)
# _register("c", Int8)
_register("b", UInt8)
_register("s", Int16)
_register("w", UInt16)
_register("i", Int32)
_register("N", Int64)
_register("u", UInt32)
_register("U", UInt64)
if numinclude.LP64:
    _register("l", Int64)
else:
    _register("l", Int32)
_register("d", Float64)
_register("f", Float32)
_register("D", Complex64)
_register("F", Complex32)

# The rest is used by numeric modules to determine conversions

# Ranking of types from lowest to highest (sorta)
if not numinclude.hasUInt64:
    genericTypeRank = ['Bool','Int8','UInt8','Int16','UInt16',
                       'Int32', 'UInt32', 'Int64',
                       'Float32','Float64', 'Complex32', 'Complex64',  'Object']
else:
    genericTypeRank = ['Bool','Int8','UInt8','Int16','UInt16',
                       'Int32', 'UInt32', 'Int64', 'UInt64',
                       'Float32','Float64', 'Complex32', 'Complex64', 'Object']
    
pythonTypeRank = [_types.IntType, _types.LongType, _types.FloatType,
                  _types.ComplexType]

# The next line is not platform independent XXX Needs to be generalized
if not numinclude.LP64:
    pythonTypeMap  = {_types.IntType:("Int32","int"),
                      _types.LongType:("Int64","int"),
                      _types.FloatType:("Float64","float"),
                      _types.ComplexType:("Complex64","complex")}

    scalarTypeMap = {_types.IntType:"Int32",
                     _types.LongType:"Int64",
                     _types.FloatType:"Float64",
                     _types.ComplexType:"Complex64"}
else:
    pythonTypeMap  = {_types.IntType:("Int64","int"),
                      _types.LongType:("Int64","int"),
                      _types.FloatType:("Float64","float"),
                      _types.ComplexType:("Complex64","complex")}

    scalarTypeMap = {_types.IntType:"Int64",
                     _types.LongType:"Int64",
                     _types.FloatType:"Float64",
                     _types.ComplexType:"Complex64"}

# Generate coercion matrix

def _initGenericCoercions():
    global genericCoercions
    genericCoercions = {}
    # vector with ...
    for ntype1 in genericTypeRank:
        nt1 = typeDict[ntype1]
        rank1 = genericTypeRank.index(ntype1)
        ntypesize1, inttype1, signedtype1 = nt1.bytes, \
                    isinstance(nt1, IntegralType), isinstance(nt1, SignedIntegralType)
        for ntype2 in genericTypeRank:
            # vector
            nt2 = typeDict[ntype2]
            ntypesize2, inttype2, signedtype2 = nt2.bytes, \
                    isinstance(nt2, IntegralType), isinstance(nt2, SignedIntegralType)
            rank2 = genericTypeRank.index(ntype2)
            if (signedtype1 != signedtype2) and inttype1 and inttype2:
                # mixing of signed and unsigned ints is a special case
                # If unsigned same size or larger, final size needs to be bigger
                #   if possible
                if signedtype1:
                    if ntypesize2 >= ntypesize1:
                        size = min(2*ntypesize2, MAX_INT_SIZE)
                    else:
                        size = ntypesize1
                else:
                    if ntypesize1 >= ntypesize2:
                        size = min(2*ntypesize1, MAX_INT_SIZE)
                    else:
                        size = ntypesize2
                outtype = "Int"+str(8*size)                
            else:
                if rank1 >= rank2:
                    outtype = ntype1
                else:
                    outtype = ntype2
            genericCoercions[(ntype1, ntype2)] = outtype
        for ntype2 in pythonTypeRank:
            # scalar
            mapto, kind = pythonTypeMap[ntype2]
            if ((inttype1 and kind=="int") or (not inttype1 and kind=="float")):
                # both are of the same "kind" thus vector type dominates
                outtype = ntype1
            else:
                rank2 = genericTypeRank.index(mapto)
                if rank1 >= rank2:
                    outtype = ntype1
                else:
                    outtype = mapto
            genericCoercions[(ntype1, ntype2)] = outtype
            genericCoercions[(ntype2, ntype1)] = outtype
    # scalar-scalar
    for ntype1 in pythonTypeRank:
        maptype1 = scalarTypeMap[ntype1]
        for ntype2 in pythonTypeRank:
            maptype2 = scalarTypeMap[ntype2]
            genericCoercions[(ntype1, ntype2)] = genericCoercions[(maptype1, maptype2)]
            
    # Special cases more easily dealt with outside of the loop
    genericCoercions[("Complex32", "Float64")] = "Complex64"
    genericCoercions[("Float64", "Complex32")] = "Complex64"
    genericCoercions[("Complex32", "Int64")] = "Complex64"
    genericCoercions[("Int64", "Complex32")] = "Complex64"
    genericCoercions[("Complex32", "UInt64")] = "Complex64"
    genericCoercions[("UInt64", "Complex32")] = "Complex64"

    genericCoercions[("Int64","Float32")] = "Float64"
    genericCoercions[("Float32", "Int64")] = "Float64"
    genericCoercions[("UInt64","Float32")] = "Float64"
    genericCoercions[("Float32", "UInt64")] = "Float64"

    genericCoercions[(float, "Bool")] = "Float64"
    genericCoercions[("Bool", float)] = "Float64"

_initGenericCoercions()

# If complex is subclassed, the following may not be necessary
genericPromotionExclusions = {
    'Bool': (),
    'Int8': (),
    'Int16': (),
    'Int32': (),
    'UInt8': (),
    'UInt16': (),
    'UInt32': (),
    'Int64' : (genericTypeRank.index('Float32'),),
    'UInt64' : (genericTypeRank.index('Float32'),),
    'Float32': (),
    'Float64': (genericTypeRank.index('Complex32'),),
    'Complex32':(),
    'Complex64':()
} # e.g., don't allow promotion from Float64 to Complex32 or Int64 to Float32

# Numeric typecodes
typecodes = {'Integer': '1silN',
             'UnsignedInteger': 'bwuU',
             'Float': 'fd',
             'Character': 'c',
             'Complex': 'FD' }

typecode = {
    Bool : "1",  
    Int8 : "1",
    UInt8 : "b",
    Int16 : "s",
    UInt16 : "w",
    Int32 : "i",
    UInt32 : "u",
    Int64 : "N",
    UInt64 : "U",
    Long : "l",
    Float32: "f",
    Float64: "d",
    Complex32: "F",
    Complex64: "D",
    Object: "O"
    }


if numinclude.hasUInt64:
    _MaximumType = {
        Bool : Bool,
        
        Int8  : Int64,
        Int16 : Int64,
        Int32 : Int64,
        Int64 : Int64,
        
        UInt8  : UInt64,
        UInt16 : UInt64,
        UInt32 : UInt64,
        UInt8  : UInt64,
        
        Float32 : Float64,
        Float64 : Float64,
        
        Complex32 : Complex64,
        Complex64 : Complex64    
        }
else:
        _MaximumType = {
        Bool : Bool,
        
        Int8  : Int64,
        Int16 : Int64,
        Int32 : Int64,
        Int64 : Int64,
        
        UInt8  : Int64,
        UInt16 : Int64,
        UInt32 : Int64,
        UInt8  : Int64,
       
        Float32 : Float64,
        Float64 : Float64,
        
        Complex32 : Complex64,
        Complex64 : Complex64    
        }

def MaximumType(t):
    """returns the type of highest precision of the same general kind as 't'"""
    return _MaximumType[t]


def getType(type):
    """Return the numeric type object for type

    type may be the name of a type object or the actual object
    """
    if isinstance(type, NumericType):
        return type
    try:
        return typeDict[type]
    except KeyError:
        raise TypeError("Not a numeric type")