File: arrayfunctions.tex

package info (click to toggle)
python-numarray 1.5.2-4
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 8,668 kB
  • ctags: 11,384
  • sloc: ansic: 113,864; python: 22,422; makefile: 197; sh: 11
file content (905 lines) | stat: -rw-r--r-- 28,616 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
\chapter{Array Functions}
\label{cha:array-functions}

Most of the useful manipulations on arrays are done with functions. This might
be surprising given Python's object-oriented framework, and that many of these
functions could have been implemented using methods instead. Choosing functions
means that the same procedures can be applied to arbitrary python sequences,
not just to arrays. For example, while \code{transpose([[1,2],[3,4]])} works
just fine, \code{[[1,2],[3,4]].transpose()} does not. This approach also allows
uniformity in interface between functions defined in the numarray Python
system, whether implemented in C or in Python, and functions defined in
extension modules. We've already covered two functions which operate on arrays:
\code{reshape} and \code{resize}.

\begin{funcdesc}{take}{array, indices, axis=0, clipmode=CLIP}
   \label{sec:array-functions:take}
   \label{func:take}
   The function \code{take} is a generalized indexing/slicing of the array.  In 
   its simplest form, it is equivalent to indexing:
\begin{verbatim}
>>> a1 = array([10,20,30,40])
>>> print a1[[1,3]]
[20 40]
>>> print take(a1,[1,3])
[20 40]
\end{verbatim}
   See the description of index
   arrays in the Array Basics section for an alternative to \code{take} 
   and \code{put}. \code{take}
   selects the elements of the array (the first argument) based on the
   indices (the second argument). Unlike slicing, however, the array
   returned by \code{take} has the same rank as the input array.  
   Some 2-D examples:
\begin{verbatim}
>>> print a2
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]]
>>> print take(a2, (0,))                 # first row
[[0 1 2 3 4]]
>>> print take(a2, (0,1))                # first and second row
[[0 1 2 3 4]
 [5 6 7 8 9]]
>>> print take (a2, (0, -1))             # index relative to dimension end
[[ 0 1 2 3 4]
[15 16 17 18 19]]
\end{verbatim}
   The optional third argument specifies the axis along which the selection
   occurs, and the default value (as in examples above) is 0, the first
   axis.  If you want a different axis, then you need to specify it:
\begin{verbatim}
>>> print take(a2, (0,), axis=1)         # first column
[[ 0]
 [ 5]
 [10]
 [15]]
>>> print take(a2, (0,1), axis=1)        # first and second column
[[ 0  1]
 [ 5  6]
 [10 11]
 [15 16]]
>>> print take(a2, (0,4), axis=1)        # first and last column
[[ 0  4]
 [ 5  9]
 [10 14]
 [15 19]]
\end{verbatim}
   
   This is considered to be a \var{structural} operation, because its 
   result does
   not depend on the content of the arrays or the result of a computation on
   those contents but uniquely on the structure of the array. Like all such
   structural operations, the default axis is 0 (the first rank). 
   Later in this tutorial, we will see other functions with a default axis 
   of -1.
   
   \function{take} is often used to create multidimensional arrays with the
   indices from a rank-1 array. As in the earlier examples, the shape of the
   array returned by \function{take} is a combination of the shape of its first
   argument and the shape of the array that elements are "taken" from -- when
   that array is rank-1, the shape of the returned array has the same shape as
   the index sequence. This, as with many other facets of numarray, is best
   understood by experiment.
\begin{verbatim}
>>> x = arange(10) * 100
>>> print x
[  0 100 200 300 400 500 600 700 800 900]
>>> print take(x, [[2,4],[1,2]])
[[200 400]
 [100 200]]
\end{verbatim}
   A typical example of using \function{take} is to replace the grey values in
   an image according to a "translation table."  For example, suppose \code{m51}
   is a 2-D array of type \code{UInt8} containing a greyscale image. We can
   create a table mapping the integers 0--255 to integers 0--255 using a
   "compressive nonlinearity":
\begin{verbatim}
>>> table = (255 - arange(256)**2 / 256).astype(UInt8)
\end{verbatim}
   Then we can perform the take() operation
\begin{verbatim}
>>> m51b = take(table, m51)
\end{verbatim}
The numarray version of \function{take} can also take a sequence as its 
axis value:
\begin{verbatim}
>>> print take(a2, [0,1], [0,1])
1
>>> print take(a2, [0,1], [1,0])
5
\end{verbatim}
In this case, it functions like indexing: a2[0,1] and a2[1,0] respectively.
\end{funcdesc}


\begin{funcdesc}{put}{array, indices, values, axis=0, clipmode=CLIP}
  \label{func:put}
   \function{put} is the opposite of \function{take}. The values of \var{array}
   at the locations specified in \var{indices} are set to the corresponding
   \var{values}.  The \var{array} must be a contiguous array. The \var{indices}
   can be any integer sequence object with values suitable for indexing into
   the flat form of \var{array}.  The \var{values} must be any sequence of
   values that can be converted to the type of \var{a}.
\begin{verbatim}
>>> x = arange(6)
>>> put(x, [2,4], [20,40])
>>> print x
[ 0  1 20  3 40  5]
\end{verbatim}
   Note that the target \var{array} is not required to be one-dimensional.
   Since \var{array} is contiguous and stored in row-major order, the
   \var{indices} can be treated as indexing \var{array}'s elements in storage
   order.  The routine \function{put} is thus equivalent to the following
   (although the loop is in C for speed):
\begin{verbatim}
ind = array(indices, copy=0)
v = array(values, copy=0).astype(a.type())
for i in range(len(ind)): a.flat[i] = v[i]
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{putmask}{array, mask, values}
   \function{putmask} sets those elements of \var{array} for which 
   \var{mask} is true to the corresponding value in \var{values}. 
   The array \var{array} must be contiguous. The argument \var{mask} 
   must be an integer sequence of the same size (but not necessarily the 
   same shape) as \var{array}. The argument \var{values} will be 
   repeated as necessary; in particular it can be a
   scalar. The array values must be convertible to the type of \var{array}.
\begin{verbatim}
>>> x=arange(5)
>>> putmask(x, [1,0,1,0,1], [10,20,30,40,50])
>>> print x
[10  1 30  3 50]
>>> putmask(x, [1,0,1,0,1], [-1,-2])
>>> print x
[-1  1 -1  3 -1]
\end{verbatim}
   Note how in the last example, the third argument was treated as if it were
   \code{[-1, -2, -1, -2, -1]}.
\end{funcdesc}


\begin{funcdesc}{transpose}{array, axes=None}
   \function{transpose} takes an array \var{array} and returns a new 
   array which corresponds to \var{a} with the order of axes specified 
   by the second argument \var{axes} which is a sequence of dimension 
   indices.  The default is to reverse the order of all axes, i.e. 
   \code{axes=arange(a.rank)[::-1]}.
\begin{verbatim}
>>> a2=arange(6,shape=(2,3)); print a2
[[0 1 2]
 [3 4 5]]
>>> print transpose(a2)  # same as transpose(a2, axes=(1,0))
[[0 3]
 [1 4]
 [2 5]]
>>> a3=arange(24,shape=(2,3,4)); print a3
[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]

 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]]
>>> print transpose(a3)  # same as transpose(a3, axes=(2,1,0))
[[[ 0 12]
  [ 4 16]
  [ 8 20]]

 [[ 1 13]
  [ 5 17]
  [ 9 21]]

 [[ 2 14]
  [ 6 18]
  [10 22]]

 [[ 3 15]
  [ 7 19]
  [11 23]]]
>>> print transpose(a3, axes=(1,0,2))
[[[ 0  1  2  3]
  [12 13 14 15]]

 [[ 4  5  6  7]
  [16 17 18 19]]

 [[ 8  9 10 11]
  [20 21 22 23]]]
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{repeat}{array, repeats, axis=0}
   \function{repeat} takes an array \var{array} and returns an array 
   with each element in the input array repeated as often as indicated by the
   corresponding elements in the second array. It operates along the specified
   axis. So, to stretch an array evenly, one needs the repeats array to contain
   as many instances of the integer scaling factor as the size of the specified
   axis:
\begin{verbatim}
>>> print a
[[0 1 2]
 [3 4 5]]
>>> print repeat(a, 2*ones(a.shape[0]))   # i.e. repeat(a, (2,2)), broadcast 
                   # rules apply, so this is also equivalent to repeat(a, 2)
[[0 1 2]
 [0 1 2]
 [3 4 5]
 [3 4 5]]
>>> print repeat(a, 2*ones(a.shape[1]), 1)  # i.e. repeat(a, (2,2,2), 1), or
                                            # repeat(a, 2, 1)
[[0 0 1 1 2 2]
 [3 3 4 4 5 5]]
>>> print repeat(a, (1,2))
[[0 1 2]
 [3 4 5]
 [3 4 5]]
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{where}{condition, x, y, out=None}
  \label{func:where}
   The \function{where} function creates an array whose values are those of
   \var{x} at those indices where \var{condition} is true, and those of \var{y}
   otherwise.  The shape of the result is the shape of \var{condition}. The
   type of the result is determined by the types of \var{x} and \var{y}. Either
   \var{x} or \var{y} (or both) can be a scalar, which is then used for all
   appropriate elements of condition.  \var{out} can be used to specify an
   output array.
\begin{verbatim}
>>> where(arange(10) >= 5, 1, 2)
array([2, 2, 2, 2, 2, 1, 1, 1, 1, 1])
\end{verbatim}

   Starting with numarray-0.6, \function{where} supports a one parameter form
   that is equivalent to the \var{nonzero} function but reads better:

\begin{verbatim}
>>> where(arange(10) % 2)
(array([1, 3, 5, 7, 9]),)   # indices where expression is true 
\end{verbatim}
   Note that in this case, the output is a tuple.

   Like \function{nonzero}, the one parameter form of \function{where} can be
   used to do array indexing:

\begin{verbatim}
>>> a = arange(10,20)
>>> a[ where( a % 2 ) ]
array([11, 13, 15, 17, 19])
\end{verbatim}

   Note that for array indices which are boolean arrays, using \function{where}
   is not necessary but is still OK:

\begin{verbatim}
>>> a[(a % 2) != 0]
array([11, 13, 15, 17, 19])
>>> a[where((a%2) != 0)]
array([11, 13, 15, 17, 19])
\end{verbatim}
\end{funcdesc}

\begin{funcdesc}{choose}{selector, population, outarr=None, clipmode=RAISE}
   The function \function{choose} provides a more general mechanism for
   selecting members of a \var{population} based on a \var{selector} array.
   Unlike \function{where}, \function{choose} can select values from more than
   two arrays.  \var{selector} is an array of integers between \constant{0} and
   \constant{n}. The resulting array will have the same shape as
   \var{selector}, with element selected from \code{population=(b0, ..., bn)}
   as indicated by the value of the corresponding element in \var{selector}.
   Assume \var{selector} is an array that you want to "clip" so that no values
   are greater than \constant{100.0}.
\begin{verbatim}
>>> choose(greater(a, 100.0), (a, 100.0))
\end{verbatim}
   Everywhere that \code{greater(a, 100.0)} is false (i.e.\ \constant{0}) this
   will ``choose'' the corresponding value in \var{a}. Everywhere else 
   it will ``choose'' \constant{100.0}.  This works as well with arrays. 
   Try to figure out what the following does:
\begin{verbatim}
>>> ret = choose(greater(a,b), (c,d))
\end{verbatim}
\end{funcdesc}

\begin{funcdesc}{ravel}{array}
   Returns the argument \var{array} as a 1-D array. It is 
   equivalent to \code{reshape(a, (-1,))}. There is a \method{ravel} 
   method which reshapes the array in-place. Unlike \code{a.ravel()}, 
   however, the \function{ravel} function works with non-contiguous arrays.
\begin{verbatim}
>>> a=arange(25)
>>> a.setshape(5,5)
>>> a.transpose()
>>> a.iscontiguous()
0
>>> a
array([[ 0,  5, 10, 15, 20],
  [ 1,  6, 11, 16, 21],
  [ 2,  7, 12, 17, 22],
  [ 3,  8, 13, 18, 23],
  [ 4,  9, 14, 19, 24]])
>>> a.ravel()
Traceback (most recent call last):
...
TypeError: Can't reshape non-contiguous arrays
>>> ravel(a)
array([ 0,  5, 10, 15, 20,  1,  6, 11, 16, 21,  2,  7, 12, 17, 22,  3,
        8, 13, 18, 23,  4,  9, 14, 19, 24])
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{nonzero}{a}
   \function{nonzero} returns a tuple of arrays containing the indices of the
   elements in \var{a} that are nonzero.

\begin{verbatim}
>>> a = array([-1, 0, 1, 2])
>>> nonzero(a)
(array([0, 2, 3]),)
>>> print a2
[[-1  0  1  2]
 [ 9  0  4  0]]
>>> print nonzero(a2)
(array([0, 0, 0, 1, 1]), array([0, 2, 3, 0, 2]))
\end{verbatim}
\end{funcdesc}

\begin{funcdesc}{compress}{condition, a, axis=0}
  \label{func:compress}
   Returns those elements of a corresponding to those elements of condition
   that are nonzero. \var{condition} must be the same size as the given axis of
   \var{a}.  Alternately, \var{condition} may match \var{a} in shape; in this
   case the result is a 1D array and \var{axis} should not be specified.
\begin{verbatim}
>>> print x
[1 0 6 2 3 4]
>>> print greater(x, 2)
[0 0 1 0 1 1]
>>> print compress(greater(x, 2), x)
[6 3 4]
>>> print a2
[[-1  0  1  2]
 [ 9  0  4  0]]
>>> print compress(a2>1, a2)
[2 9 4]
>>> a = array([[1,2],[3,4]])
>>> print compress([1,0], a, axis = 1)
[[1]
[3]]
>>> print compress([[1,0],[0,1]], a)
[1, 4]
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{diagonal}{a, offset=0, axis1=0, axis2=1}
   Returns the entries along the diagonal of \var{a} specified by \var{offset}.
   The \var{offset} is relative to the \var{axis2} axis.  This is designed for
   2-D arrays. For arrays of higher ranks, it will return the diagonal of each
   2-D sub-array.  The 2-D array does not have to be square.

   Warning:  in Numeric (and numarray 0.7 or before), there is a bug in 
   the \function{diagonal} function which will give erronous result for 
   arrays of 3-D or higher.
\begin{verbatim}
>>> print x
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
>>> print diagonal(x)
[ 0  6 12 18 24]
>>> print diagonal(x, 1)
[ 1  7 13 19]
>>> print diagonal(x, -1)
[ 5 11 17 23]
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{trace}{a, offset=0, axis1=0, axis2=1}
   Returns the sum of the elements in a along the diagonal specified by offset.

   Warning:  in Numeric (and numarray 0.7 or before), there is a bug in 
   the \function{trace} function which will give erronous result for 
   arrays of 3-D or higher.
\begin{verbatim}
>>> print x
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
>>> print trace(x)                      # 0 + 6 + 12 + 18 + 24
60
>>> print trace(x, -1)                  # 5 + 11 + 17 + 23
56
>>> print trace(x, 1)                   # 1 + 7 + 13 + 19
40
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{searchsorted}{bin, values}
   Called with a rank-1 array sorted in ascending order,
   \function{searchsorted} will return the indices of the positions in 
   \var{bin} where the corresponding \var{values} would fit.
\begin{verbatim}
>>> print bin_boundaries
[ 0.   0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1. ]
>>> print data
[ 0.31  0.79  0.82  5.  -2.  -0.1 ]
>>> print searchsorted(bin_boundaries, data)
[4 8 9 11 0 0]
\end{verbatim}
   This can be used for example to write a simple histogramming function:
\begin{verbatim}
>>> def histogram(a, bins):
...         # Note that the argument names below are reverse of the 
...         # searchsorted argument names
...         n = searchsorted(sort(a), bins)
...         n = concatenate([n, [len(a)]])
...         return n[1:]-n[:-1]
...
>>> print histogram([0,0,0,0,0,0,0,.33,.33,.33], arange(0,1.0,.1))
[7 0 0 3 0 0 0 0 0 0]
>>> print histogram(sin(arange(0,10,.2)), arange(-1.2, 1.2, .1))
[0 0 4 2 2 2 0 2 1 2 1 3 1 3 1 3 2 3 2 3 4 9 0 0]
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{sort}{array, axis=-1}
   This function returns an array containing a copy of the data in 
   \var{array}, with the same shape as \var{array}, but with the 
   order of the elements along the specified \var{axis} sorted. The shape 
   of the returned array is the same as \var{array}'s.  Thus, 
   \code{sort(a, 3)} will be an array of the same shape as \var{array}, 
   where the elements of \var{array} have been sorted along the fourth
   axis.
\begin{verbatim}
>>> print data
[[5 0 1 9 8]
 [2 5 8 3 2]
 [8 0 3 7 0]
 [9 6 9 5 0]
 [9 0 9 7 7]]
>>> print sort(data)                    # Axis -1 by default
[[0 1 5 8 9]
 [2 2 3 5 8]
 [0 0 3 7 8]
 [0 5 6 9 9]
 [0 7 7 9 9]]
>>> print sort(data, 0)
[[2 0 1 3 0]
 [5 0 3 5 0]
 [8 0 8 7 2]
 [9 5 9 7 7]
 [9 6 9 9 8]]
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{argsort}{array, axis=-1}
   \function{argsort} will return the indices of the elements of the array
   needed to produce \code{sort(array)}. In other words, for a 1-D array,
   \code{take(a.flat, argsort(a))} is the same as \code{sort(a)}... but slower.
\begin{verbatim}
>>> print data
[5 0 1 9 8]
>>> print sort(data)
[0 1 5 8 9]
>>> print argsort(data)
[1 2 0 4 3]
>>> print take(data, argsort(data))
[0 1 5 8 9]
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{argmax}{array, axis=-1}
\end{funcdesc}
\begin{funcdesc}{argmin}{array, axis=-1}
   The \function{argmax} function returns an array (or scalar for a 1D array)
   with the index(es) of the maximum value(s) of its input \var{array} along
   the given \var{axis}. The returned array will have one less dimension than
   \var{array}. \function{argmin} is just like \function{argmax}, except that
   it returns the indices of the minima along the given axis.
\begin{verbatim}
>>> print data
[[9 6 1 3 0]
 [0 0 8 9 1]
 [7 4 5 4 0]
 [5 2 7 7 1]
 [9 9 7 9 7]]
>>> print argmax(data)
[0 3 0 3 1]
>>> print argmax(data, 0)
[4 4 1 4 4]
>>> print argmin(data)
[4 1 4 4 4]
>>> print argmin(data, 0)
[1 1 0 0 2]
\end{verbatim}
\end{funcdesc}

\begin{funcdesc}{fromstring}{datastring, type, shape=None}
   Will return the array formed by the binary data given in 
   \var{datastring}, of the specified \var{type}. This is mainly 
   used for reading binary data to and from files, it can also be used to 
   exchange binary data with other modules that use python strings as 
   storage (e.g.\ PIL). Note that this representation is dependent on the 
   byte order. To find out the byte ordering used, use the 
   \method{isbyteswapped} method described on page 
   \pageref{arraymethod:byteswap}.  If \var{shape} is not specified, the 
   created array will be one dimensional.
\end{funcdesc}

\begin{funcdesc}{fromfile}{file, type, shape=None}
  If \var{file} is a string then it is interpreted as the name of a 
  file which is opened and read.  Otherwise, \var{file} must be a 
  Python file object which is read as a source of binary array data.  
  \function{fromfile} reads directly into the newly created array buffer 
  with no intermediate string, but otherwise is similar to fromstring, 
  treating the contents of the specified file as a binary data string.
\end{funcdesc}

\begin{funcdesc}{dot}{a, b}
   The \function{dot} function returns the dot product of \var{a} and
   \var{b}. This is equivalent to matrix multiply for rank-2 arrays (without
   the transposition).  This function is identical to the
   \function{matrixmultiply} function.
\begin{verbatim}
>>> print a
[1 2]
>>> print b
[10 11]
# kind of like vector inner product with implicit transposition 
>>> print dot(a,b), dot(b,a) 
32 32
>>> print a
[[1 2]
 [5 7]]
>>> print b
[[  0   1]
 [ 10 100]]
>>> print dot(a,b)
[[ 20 201]
 [ 70 705]]
>>> print dot(b,a)
[[  5   7]
 [510 720]]
\end{verbatim}
\end{funcdesc}

\begin{funcdesc}{matrixmultiply}{a, b}
   This function multiplies matrices or matrices and vectors as matrices rather
   than elementwise. This function is identical to \function{dot}.  Compare:
\begin{verbatim}
>>> print a
[[0 1 2]
 [3 4 5]]
>>> print b
[1 2 3]
>>> print a*b
[[ 0  2  6]
 [ 3  8 15]]
>>> print matrixmultiply(a,b)
[ 8 26]
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{clip}{m, m_min, m_max}
   The clip function creates an array with the same shape and type as 
   \var{m}, but where every entry in \var{m} that is less than 
   \var{m_min} is replaced by \var{m_min}, and every entry greater 
   than \var{m_max} is replaced by \var{m_max}.  Entries within 
   the range \var{[m_min, m_max]} are left unchanged.
\begin{verbatim}
>>> a = arange(9, type=Float32)
>>> print clip(a, 1.5, 7.5)
[1.5 1.5 2. 3. 4. 5. 6. 7. 7.5]
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{indices}{shape, type=None}
   The indices function returns an array corresponding to the \var{shape} 
   given. The array returned is an array of a new shape which is based on 
   the specified \var{shape}, but has an added dimension of length 
   the number of dimensions in the specified shape.  For example, if 
   \code{shape=(3,4)}, then the shape of the array returned will be
   \code{(2,3,4)} since the length of \code{(3,4)} is \var{2} and if 
   \code{shape=(5,6,7)}, the returned array's shape will be \code{(3,5,6,7)}. 
   The contents of the returned arrays are such that the \var{i}th subarray 
   (along index 0, the first dimension) contains the indices for that axis 
   of the elements in the array.  An example makes things clearer:
\begin{verbatim}
>>> i = indices((4,3))
>>> i.getshape()
(2, 4, 3)
>>> print i[0]
[[0 0 0]
 [1 1 1]
 [2 2 2]
 [3 3 3]]
>>> print i[1]
[[0 1 2]
 [0 1 2]
 [0 1 2]
 [0 1 2]]
\end{verbatim}
   So, \code{i[0]} has an array of the specified shape, and each element in
   that array specifies the index of that position in the subarray for axis 0.
   Similarly, each element in the subarray in \code{i[1]} contains the index of
   that position in the subarray for axis 1.
\end{funcdesc}


\begin{funcdesc}{swapaxes}{array, axis1, axis2}
   Returns a new array which \var{shares} the data of \var{array}, but 
   has the two axes specified by \var{axis1} and \var{axis2} 
   swapped. If \var{array} is of rank 0 or 1, swapaxes simply returns a 
   new reference to \var{array}.
\begin{verbatim}
>>> x = arange(10)
>>> x.setshape((5,2,1))
>>> print x
[[[0]
  [1]]

 [[2]
  [3]]

 [[4]
  [5]]

 [[6]
  [7]]

 [[8]
  [9]]]
>>> y = swapaxes(x, 0, 2)
>>> y.getshape()
(1, 2, 5)
>>> print y
[[[0 2 4 6 8]
 [1 3 5 7 9]]]
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{concatenate}{arrs, axis=0}
   Returns a new array containing copies of the data contained in all arrays
   of \var{arrs= (a0, a1, ... an)}.  The arrays \var{ai} will be 
   concatenated along the specified \var{axis} (default=0). All 
   arrays \var{ai} must have the same shape along every axis except for 
   the one specified in \var{axis}. To concatenate arrays along a
   newly created axis, you can use \code{array((a0, ..., an))}, as long as all
   arrays have the same shape.
\begin{verbatim}
>>> print x
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]
>>> print concatenate((x,x))
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]
 [ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]
>>> print concatenate((x,x), 1)
[[ 0  1  2  3  0  1  2  3]
 [ 5  6  7  8  5  6  7  8]
 [10 11 12 13 10 11 12 13]]
>>> print array((x,x))   # Note: one extra dimension
[[[ 0  1  2  3]
  [ 5  6  7  8]
  [10 11 12 13]]
 [[ 0  1  2  3]
  [ 5  6  7  8]
  [10 11 12 13]]]
>>> print a
[[1 2]]
>>> print b
[[3 4 5]]
>>> print concatenate((a,b),1)
[[1 2 3 4 5]]
>>> print concatenate((a,b),0)
ValueError: _concat array shapes must match except 1st dimension
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{innerproduct}{a, b}
   \function{innerproduct} produces the inner product of arrays \var{a} and
   \var{b}. It is equivalent to \code{matrixmultiply(a, transpose(b))}.
\end{funcdesc}


\begin{funcdesc}{outerproduct}{a,b}
   \function{outerproduct} produces the outer product of vectors \var{a} and
   \var{b}, that is \code{result[i, j] = a[i] * b[j]}.
\end{funcdesc}


\begin{funcdesc}{array_repr}{a, max_line_width=None, precision=None, supress_small=None}
   See section \ref{TBD} on Textual Representations of arrays.
\end{funcdesc}


\begin{funcdesc}{array_str}{a, max_line_width=None, precision=None, supress_small=None}
   See section \ref{TBD} Textual Representations of arrays.
\begin{verbatim}
>>> print a
[  1.00000000e+00   1.10000000e+00   1.11600000e+00   1.11380000e+00
   1.20000000e-02   1.34560000e-04]
>>> print array_str(a,precision=4,suppress_small=1)
[ 1.      1.1     1.116   1.1138  0.012   0.0001]
>>> print array_str(a,precision=3,suppress_small=1)
[ 1.     1.1    1.116  1.114  0.012  0.   ]
>>> print array_str(a,precision=3)
[  1.000e+00   1.100e+00   1.116e+00   1.114e+00   1.200e-02
   1.346e-04]
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{resize}{array, shape}
  \label{func:resize}
   The \function{resize} function takes an array and a shape, and returns a new
   array with the specified \var{shape}, and filled with the data in 
   the input \var{array}.  Unlike the \function{reshape} function, the 
   new shape does not have to yield the same size as the original array. 
   If the new size of is less than that of the input \var{array}, the 
   returned array contains the appropriate data from the "beginning" of the 
   old array. If the new size is greater than that of the input array, the 
   data in the input \var{array} is repeated as many times as needed
   to fill the new array.
\begin{verbatim}
>>> x = arange(10)
>>> y = resize(x, (4,2))                # note that 4*2 < 10
>>> print x
[0 1 2 3 4 5 6 7 8 9]
>>> print y
[[0 1]
 [2 3]
 [4 5]
 [6 7]]
>>> print resize(array((0,1)), (5,5))   # note that 5*5 > 2
[[0 1 0 1 0]
 [1 0 1 0 1]
 [0 1 0 1 0]
 [1 0 1 0 1]
 [0 1 0 1 0]]
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{identity}{n, type=None}
   The identity function returns an \var{n} by \var{n} array 
   where the diagonal elements are 1, and the off-diagonal elements are 0.
\begin{verbatim}
>>> print identity(5)
[[1 0 0 0 0]
 [0 1 0 0 0]
 [0 0 1 0 0]
 [0 0 0 1 0]
 [0 0 0 0 1]]
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{sum}{a, axis=0}
   The sum function is a synonym for the \method{reduce} method of the
   \function{add} ufunc. It returns the sum of all of the elements in the
   sequence given along the specified axis (first axis by default).
\begin{verbatim}
>>> print x
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]
 [16 17 18 19]]
>>> print sum(x)
[40 45 50 55]                           # 0+4+8+12+16, 1+5+9+13+17,
2+6+10+14+18, ...
>>> print sum(x, 1)
[ 6 22 38 54 70]                        # 0+1+2+3, 4+5+6+7, 8+9+10+11, ...
\end{verbatim}
\end{funcdesc}


\begin{funcdesc}{cumsum}{a, axis=0}
   The cumsum function is a synonym for the \method{accumulate} method of the
   \function{add} ufunc.
\end{funcdesc}


\begin{funcdesc}{product}{a, axis=0}
   The product function is a synonym for the \method{reduce} method of the
   \function{multiply} ufunc.
\end{funcdesc}


\begin{funcdesc}{cumproduct}{a, axis=0}
   The cumproduct function is a synonym for the \method{accumulate} method of
   the \function{multiply} ufunc.
\end{funcdesc}


\begin{funcdesc}{alltrue}{a, axis=0}
   The alltrue function is a synonym for the \method{reduce} method of the
   \function{logical_and} ufunc.
\end{funcdesc}


\begin{funcdesc}{sometrue}{a, axis=0}
   The sometrue function is a synonym for the \method{reduce} method of the
   \function{logical_or} ufunc.
\end{funcdesc}


\begin{funcdesc}{all}{a}
   \function{all} is a synonym for the \method{reduce} method of the
   \function{logical_and} ufunc, preceded by a \function{ravel} which converts
   arrays with \(rank>1\) to \(rank=1\).  Thus, \function{all} tests that all
   the elements of a multidimensional array are nonzero.
\end{funcdesc}


\begin{funcdesc}{any}{a}
   The \function{any} function is a synonym for the \method{reduce} method of
   the \function{logical_and} ufunc, preceded by a \function{ravel} which
   converts arrays with \(rank>1\) to \(rank=1\).  Thus, \function{any} tests
   that at least one of the elements of a multidimensional array is nonzero.
\end{funcdesc}


\begin{funcdesc}{allclose}{a, b, rtol=1.e-5, atol=1.e-8}
   This function tests whether or not arrays \var{x} and \var{y} 
   of an integer or real type are equal subject to the given relative and 
   absolute tolerances: \code{rtol, atol}. The formula used is:
   \begin{equation}
      \left| x - y \right| < atol + rtol * \left| y \right|
   \end{equation}
   This means essentially that both elements are small compared to \var{atol}
   or their difference divided by \var{y}'s value is small compared to
   \var{rtol}.
\end{funcdesc}



\begin{seealso}
   \seemodule{numarray.convolve}{The \function{convolve} function is implemented in the
      optional \module{numarray.convolve} package.}%
   \seemodule{numarray.convolve}{The \function{correlation} function is implemented in
      the optional \module{numarray.convolve} package.}%
\end{seealso} 




%% Local Variables:
%% mode: LaTeX
%% mode: auto-fill
%% fill-column: 79
%% indent-tabs-mode: nil
%% ispell-dictionary: "american"
%% reftex-fref-is-default: nil
%% TeX-auto-save: t
%% TeX-command-default: "pdfeLaTeX"
%% TeX-master: "numarray"
%% TeX-parse-self: t
%% End: