1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
|
\chapter{Array Methods}
\label{cha:array-methods}
As we discussed at the beginning of the last chapter, there are very few array
methods for good reasons, and these all depend on the implementation
details. They're worth knowing, though.
\begin{methoddesc}[numarray]{argmax}{axis=-1}
\label{arraymethod:argmax}
The \method{argmax} method returns the index of the largest element in a 1D
array. In the case of a multi-dimensional array, it returns and array of
indices.
\begin{verbatim}
>>> array([1,2,4,3]).argmax()
2
>>> arange(100, shape=(10,10)).argmax()
array([9, 9, 9, 9, 9, 9, 9, 9, 9, 9])
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{argmin}{axis=-1}
\label{arraymethod:argmin}
The \method{argmin} method returns the index of the smallest element in a 1D
array. In the case of a multi-dimensional array, it returns and array of
indices.
\end{methoddesc}
\begin{methoddesc}[numarray]{argsort}{axis=-1}
\label{arraymethod:argsort}
The \method{argsort} method returns the array of indices which if taken from
the array using \function{take} would return a sorted copy of the array. For
multi-dimensional arrays, \method{argsort} computes the indices for each 1D
subarray independently and aggregates them all into a single array result;
The \method{argsort} of a multi-dimensional array does not produce a sorted
copy of the array when applied directly to it using \function{take}; instead,
each 1D subarray must be passed to \function{take} independently.
\begin{verbatim}
>>> array([1,2,4,3]).argsort()
array([0, 1, 3, 2])
>>> take([1,2,4,3], argsort([1,2,4,3]))
array([1, 2, 3, 4])
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{astype}{type}
\label{arraymethod:astype}
The \method{astype} method returns a copy of the array converted to the
specified type. As with any copy, the new array is aligned, contiguous, and
in native machine byte order. If the specified type is the same as current
type, a copy is \emph{still} made.
\begin{verbatim}
>>> arange(5).astype('Float64')
array([ 0., 1., 2., 3., 4.])
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{byteswap}{}
\label{arraymethod:byteswap}
The \method{byteswap} method performs a byte swapping operation on all the
elements in the array, working inplace (i.e.\ it returns None).
\method{byteswap} does not affect the array's byte order state variable.
See \method{togglebyteorder} for changing the array's byte order state
in addition to or rather than physically swapping bytes.
\begin{verbatim}
>>> print a
[1 2 3]
>>> a.byteswap()
>>> print a
[16777216 33554432 50331648]
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{byteswapped}{}
\label{arraymethod:byteswapped}
The \method{byteswapped} method returns a byteswapped copy of the array.
\method{byteswapped} does not affect the array's own byte order state
variable. The result of \method{byteswapped} is logically in native byte
order.
\begin{verbatim}
>>> array([1,2,3]).byteswapped()
array([16777216, 33554432, 50331648])
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{conjugate}{}
\label{arraymethod:conjugate}
The \method{conjugate} method returns the complex conjugate of an array.
\begin{verbatim}
>>> (arange(3) + 1j).conjugate()
array([ 0.-1.j, 1.-1.j, 2.-1.j])
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{copy}{}
\label{arraymethod:copy}
The \method{copy} method returns a copy of an array. When making an
assignment or taking a slice, a new array object is created and has its own
attributes, except that the data attribute just points to the data of the
first array (a "view"). The \method{copy} method is used when it is
important to obtain an independent copy. \method{copy} returns arrays which
are contiguous, aligned, and not byteswapped, i.e. well behaved.
\begin{verbatim}
>>> c = a[3:8:2].copy()
>>> print c.iscontiguous()
1
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{diagonal}{}
\label{arraymethod:diagonal}
The \method{diagonal} method returns the diagonal elements of the array,
those elements where the row and column indices are equal.
\begin{verbatim}
>>> arange(25,shape=(5,5)).diagonal()
array([ 0, 6, 12, 18, 24])
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{info}{}
\label{arraymethod:info} Calling an array's \method{info}
method prints out information about the array which is useful for debugging.
\begin{verbatim}
>>> arange(10).info()
class: <class 'numarray.numarraycore.NumArray'>
shape: (10,)
strides: (4,)
byteoffset: 0
bytestride: 4
itemsize: 4
aligned: 1
contiguous: 1
data: <memory at 0x08931d18 with size:0x00000028 held by object 0x3ff91bd8 aliasing object 0x00000000>
byteorder: little
byteswap: 0
type: Int32
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{isaligned}{}
\label{arraymethod:isaligned} \method{isaligned} returns 1 IFF the buffer
address for an array modulo the array itemsize is 0. When the array
itemsize exceeds 8 (sizeof(double)) aligment is done modulo 8.
\end{methoddesc}
\begin{methoddesc}[numarray]{isbyteswapped}{}
\label{arraymethod:isbyteswapped} \method{isbyteswapped} returns 1 IFF the
array's binary data is not in native machine byte order, possibly because it
originated on a machine with a different native order.
\end{methoddesc}
\begin{methoddesc}[numarray]{iscontiguous}{}
\label{arraymethod:iscontiguous} \method{iscontiguous} returns 1 IFF
an array is C-contiguous and 0 otherwise. An array is C-contiguous if its
smallest stride corresponds to the innermost dimension and its other strides
strictly increase in size from the innermost dimension to the outermost,
with each stride being the product of the previous inner stride and shape.
A non-contiguous array can be converted to a contiguous array by the
\method{copy} method.
\begin{verbatim}
>>> a=arange(25, shape=(5,5))
>>> a
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
>>> a.iscontiguous()
1
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{is_c_array}{}
\label{arraymethod:is-c-array}
\method{is_c_array} returns 1 IFF an array is C-contiguous, aligned, and
not byteswapped, and returns 0 otherwise.
\begin{verbatim}
>>> a=arange(25, shape=(5,5))
>>> a.is_c_array()
1
>>> a.is_f_array()
0
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{is_fortran_contiguous}{}
\label{arraymethod:is-fortran-contiguous}
\method{is_fortran_contiguous} returns 1 IFF an array is Fortran-contiguous
and 0 otherwise. An array is Fortran-contiguous if its smallest stride
corresponds to its outermost dimension and each succesive stride is the
product of the previous stride and shape element.
\begin{verbatim}
>>> a=arange(25, shape=(5,5))
>>> a.transpose()
>>> a
array([[ 0, 5, 10, 15, 20],
[ 1, 6, 11, 16, 21],
[ 2, 7, 12, 17, 22],
[ 3, 8, 13, 18, 23],
[ 4, 9, 14, 19, 24]])
>>> a.iscontiguous()
0
>>> a.is_fortran_contiguous()
1
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{is_f_array}{}
\label{arraymethod:is-f-array} \method{is_f_array} returns 1 IFF
an array is Fortran-contiguous, aligned, and not byteswapped, and returns 0
otherwise.
\begin{verbatim}
>>> a=arange(25, shape=(5,5))
>>> a.transpose()
>>> a.is_f_array()
1
>>> a.is_c_array()
0
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{itemsize}{}
\label{arraymethod:itemsize} The \method{itemsize} method
returns the number of bytes used by any one of its elements.
\begin{verbatim}
>>> a = arange(10)
>>> a.itemsize()
4
>>> a = array([1.0])
>>> a.itemsize()
8
>>> a = array([1], type=Complex64)
>>> a.itemsize()
16
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{max}{}
\label{arraymethod:max}
The \method{max} method returns the largest element in an array.
\begin{verbatim}
>>> arange(100, shape=(10,10)).max()
99
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{mean}{}
\label{arraymethod:mean}
The \method{mean} method returns the average of all elements in an array.
\begin{verbatim}
>>> arange(10).mean() 4.5
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{min}{}
\label{arraymethod:min}
The \method{min} method returns the smallest element in an array.
\begin{verbatim}
>>> arange(10).min()
0
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{nelements}{}
\label{arraymethod:nelements}
\method{nelements} returns the total number of elements in this array.
Synonymous with \method{size}.
\begin{verbatim}
>>> arange(100).nelements()
100
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{new}{type=None}
\label{arraymethod:new}
\method{new} returns a new array of the specified type with the same shape
as this array. The new array is uninitialized.
\end{methoddesc}
\begin{methoddesc}[numarray]{nonzero}{axis=-1}
\label{arraymethod:nonzero}
\method{nonzero} returns a tuple of arrays containing the indices of the
elements that are nonzero.
\begin{verbatim}
>>> arange(5).nonzero()
(array([1, 2, 3, 4]),)
>>> b = arange(9, shape=(3,3)) % 2; b
array([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]])
>>>b.nonzero()
(array([0, 1, 1, 2]), array([1, 0, 2, 1]))
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{repeat}{r, axis=0}
\label{arraymethod:repeat}
The \method{repeat} method returns a new array with each element self[i]
(along the specified axis) repeated r[i] times.
\begin{verbatim}
>>> a=arange(25, shape=(5,5))
>>> a
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
>>> a.repeat(arange(5)%2*2)
array([[ 5, 6, 7, 8, 9],
[ 5, 6, 7, 8, 9],
[15, 16, 17, 18, 19],
[15, 16, 17, 18, 19]])
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{resize}{shape}
\label{arraymethod:resize}
\method{resize} shrinks/grows the array to new \var{shape}, possibly
replacing the underlying buffer object.
\begin{verbatim}
>>> a = array([0, 1, 2, 3])
>>> a.resize(10)
array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1])
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{size}{}
\label{arraymethod:size}
\method{size} returns the total number of elements in this array.
Synonymous with \method{nelements}.
\begin{verbatim}
>>> arange(100).size()
100
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{type}{}
\label{arraymethod:type}
The \method{type} method returns the type of the array it is applied to.
While we've been talking about them as Float32, Int16, etc., it is important
to note that they are not character strings, they are instances of
NumericType classes.
\begin{verbatim}
>>> a = array([1,2,3])
>>> a.type()
Int32
>>> a = array([1], type=Complex64)
>>> a.type()
Complex64
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{typecode}{}
\label{arraymethod:typecode}
The \method{typecode} method returns the typecode character of the array it
is applied to. \method{typecode} exists for backward compatibility with
Numeric but the \method{type} method is preferred.
\begin{verbatim}
>>> a = array([1,2,3])
>>> a.typecode()
'l'
>>> a = array([1], type=Complex64)
>>> a.typecode()
'D'
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{tofile}{file}
\label{arraymethod:tofile}
The \method{tofile} method writes the binary data of the array into
\constant{file}. If \constant{file} is a Python string, it is interpreted
as the name of a file to be created. Otherwise, \constant{file} must be
Python file object to which the data will be written.
\begin{verbatim}
>>> a = arange(65,100)
>>> a.tofile('test.dat') # writes a's binary data to file 'test.dat'.
>>> f = open('test2.dat', 'w')
>>> a.tofile(f) # writes a's binary data to file 'test2.dat'
\end{verbatim}
Note that the binary representation of array data depends on the platform,
with some platforms being little endian (sys.byteorder == 'little') and
others being big endian. The byte order of the array data is \emph{not}
recorded in the file, nor are the array's shape and type.
\end{methoddesc}
\begin{methoddesc}[numarray]{tolist}{}
\label{arraymethod:tolist}
Calling an array's \method{tolist} method returns a hierarchical python list
version of the same array:
\begin{verbatim}
>>> print a
[[65 66 67 68 69 70 71]
[72 73 74 75 76 77 78]
[79 80 81 82 83 84 85]
[86 87 88 89 90 91 92]
[93 94 95 96 97 98 99]]
>>> print a.tolist()
[[65, 66, 67, 68, 69, 70, 71], [72, 73, 74, 75, 76, 77, 78], [79, 80,
81, 82, 83, 84, 85], [86, 87, 88, 89, 90, 91, 92], [93, 94, 95, 96, 97,
98, 99]]
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{tostring}{}
\label{arraymethod:tostring}
The \method{tostring} method returns a string representation of the
array data.
\begin{verbatim}
>>> a = arange(65,70)
>>> a.tostring()
'A\x00\x00\x00B\x00\x00\x00C\x00\x00\x00D\x00\x00\x00E\x00\x00\x00'
\end{verbatim}
Note that the arangement of the printable characters and interspersed NULL
characters is dependent on machine architecture. The layout shown here is
for little endian platform.
\end{methoddesc}
\begin{methoddesc}[numarray]{transpose}{axis=-1}
\label{arraymethod:transpose}
\method{transpose} re-shapes the array by permuting it's dimensions
as specified by 'axes'. If 'axes' is none, \method{transpose}
reverses the array's dimensions. \method{transpose} operates
in-place and returns None.
\begin{verbatim}
>>> a = arange(9, shape=(3,3))
>>> a.transpose()
>>> a
array([[0, 3, 6],
[1, 4, 7],
[2, 5, 8]])
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{stddev}{}
\label{arraymethod:stddev}
The \method{stddev} method returns the standard deviation of all elements in
an array.
\begin{verbatim}
>>> arange(10).stddev()
3.0276503540974917
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{sum}{}
\label{arraymethod:sum}
The \method{sum} method returns the sum of all elements in an array.
\begin{verbatim}
>>> arange(10).sum()
45
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{swapaxes}{axis1, axis2}
\label{arraymethod:swapaxes}
The \method{swapaxes} method adjusts the strides of an array so that
the two specified axes appear to be swapped. \method{swapaxes} operates
in place and returns None.
\begin{verbatim}
>>> a = arange(25, shape=(5,5))
>>> a.swapaxes(0,1)
>>> a
array([[ 0, 5, 10, 15, 20],
[ 1, 6, 11, 16, 21],
[ 2, 7, 12, 17, 22],
[ 3, 8, 13, 18, 23],
[ 4, 9, 14, 19, 24]])
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{togglebyteorder}{}
\label{arraymethod:togglebyteorder}
The \method{togglebyteorder} method adjusts the byte order state
variable for an array, with ``little'' being replaced by ``big'' and ``big''
being replaced by ``little''. \method{togglebyteorder} just reinterprets
the existing data, it does not actually rearrange bytes.
\begin{verbatim}
>>> a = arange(4)
>>> a.togglebyteorder()
>>> a
array([ 0, 16777216, 33554432, 50331648])
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{trace}{}
\label{arraymethod:togglebyteorder}
The \method{trace} method returns the sum of the diagonal elements
of an array.
\begin{verbatim}
>>> a = arange(25, shape=(5,5))
>>> a.trace()
60
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{view}{}
\label{arraymethod:view} The \method{view} method returns a new
state object for an array but does not actually copy the array's
data; views are used to reinterpret an existing data buffer by
changing the array's properties.
\begin{verbatim}
>>> a = arange(4)
>>> b = a.view()
>>> b.shape = (2,2)
>>> a
array([0, 1, 2, 3])
>>> b
array([[0, 1],
[2, 3]])
>>> a is b
False
>>> a._data is b._data
True
\end{verbatim}
\end{methoddesc}
When using Python 2.2 or later, there are four public attributes which
correspond to those of Numeric type objects. These are \member{shape},
\member{flat}, \member{real}, and \member{imag} (or \member{imaginary}). The
following methods are used to implement and provide an alternative to using
these attributes.
\begin{methoddesc}[numarray]{getshape}{}
\end{methoddesc}
\begin{methoddesc}[numarray]{setshape}{}
The \method{getshape} method returns the tuple that gives the shape of the
array. \method{setshape} assigns its argument (a tuple) to the internal
attribute which defines the array shape. When using Python 2.2 or later, the
\member{shape} attribute can be accessed or assigned to, which is equivalent
to using these methods.
\begin{verbatim}
>>> a = arange(12)
>>> a.setshape((3,4))
>>> print a.getshape()
(3, 4)
>>> print a
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{getflat}{}
The \method{getflat} method is equivalent to using the \member{flat}
attribute of Numeric. For compatibility with Numeric, there is no
\method{setflat} method, although the attribute can in fact be set using
\method{setshape}.
\begin{verbatim}
>>> print a
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
>>> print a.getflat()
[ 0 1 2 3 4 5 6 7 8 9 10 11]
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[numarray]{getreal}{}
\end{methoddesc}
\begin{methoddesc}[numarray]{setreal}{}
The \method{getreal} and \method{setreal} methods can be used to access or
assign to the real part of an array containing imaginary elements.
\end{methoddesc}
\begin{methoddesc}[numarray]{getimag}{}
\end{methoddesc}
\begin{methoddesc}[numarray]{getimaginary}{}
\end{methoddesc}
\begin{methoddesc}[numarray]{setimag}{}
\end{methoddesc}
\begin{methoddesc}[numarray]{setimaginary}{}
The \method{getimag} and \method{setimag} methods can be used to access or
assign to the imaginary part of an array containing imaginary elements.
\method{getimaginary} is equivalent to \method{getimag}, and
\method{setimaginary} is equivalent to \method{setimag}.
\end{methoddesc}
%% Local Variables:
%% mode: LaTeX
%% mode: auto-fill
%% fill-column: 79
%% indent-tabs-mode: nil
%% ispell-dictionary: "american"
%% reftex-fref-is-default: nil
%% TeX-auto-save: t
%% TeX-command-default: "pdfeLaTeX"
%% TeX-master: "numarray"
%% TeX-parse-self: t
%% End:
|