File: extending.tex

package info (click to toggle)
python-numarray 1.5.2-4
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 8,668 kB
  • ctags: 11,384
  • sloc: ansic: 113,864; python: 22,422; makefile: 197; sh: 11
file content (1417 lines) | stat: -rw-r--r-- 60,732 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
\chapter{C extension API}
\label{cha:C-API}
\declaremodule{extension}{C-API}
\index{C-API}

\begin{quote}
   This chapter describes the different available C-APIs for \module{numarray}
   based extension modules.
\end{quote}

While this chapter describes the \module{\numarray}-specifics for writing
extension modules, a basic understanding of \python extension modules is
expected. See \python's \ulink{Extending and
   Embedding}{http://www.python.org/doc/current/ext/ext.html} tutorial and the
\ulink{Python/C API}{http://www.python.org/doc/current/api/api.html}.

The numarray C-API has several different facets, and the first three facets
each make different tradeoffs between memory use, speed, and ease of use.  An
additional facet provides backwards compatability with legacy Numeric code.
The final facet consists of miscellaneous function calls used to implement
and utilize numarray, that were not part of Numeric.

In addition to most of the basic functionality provided by Numeric, these APIs
provide access to misaligned, byteswapped, and discontiguous \class{numarray}s.
Byteswapped arrays arise in the context of portable binary data formats where
the byteorder specified by the data format is not the same as the host
processor byte order.  Misaligned arrays arise in the context of tabular data:
files of records where arrays are superimposed on the column formed by a single
field in the record.  Discontiguous arrays arise from operations which permute
the shape and strides of an array, such as reshape.

\begin{description}
\item[Numeric compatability] This API provides a reasonable (if not complete)
   simulation of the Numeric C-API.  It is written in terms of the numarray
   high level API (discussed below) so that misbehaved numarrays are copied
   prior to processing with legacy Numeric code.  This API was actually written
   last because of the extra considerations in numarray not found in Numeric.
   Nevertheless, it is perhaps the most important because it enables writing
   extension modules which can be compiled for either numarray or Numeric.  It
   is also very useful for porting existing Numeric code.  See section
   \ref{sec:C-API:numeric-simulation}.
\item[High-level] This is the cleanest and eaisiest to use API.  It creates
   temporary arrays to handle difficult cases (discontiguous, byteswapped,
   misaligned) in C code.  Code using this API is written in terms of a pointer
   to a contiguous 1D array of C data.  See section
   \ref{sec:C-API:high-level-api}.
\item[Element-wise] This API handles misbehaved arrays without creating
     temporaries.  Code using this API is written to access single elements of
     an array via macros or functions.  \note{These macros are relatively slow
     compared to raw access to C data, and the functions even slower.} See
     section \ref{sec:C-API:element-wise-api}.
\item[One-dimensional] Code using this API get/sets consecutive elements of the
   inner dimension of an array, enabling the API to factor out tests for
   aligment and byteswapping to one test per array rather than one test per
   element.  Fewer tests means better performance, but at a cost of some
   temporary data and more difficult usage.  See section
   \ref{sec:C-API:One-dimensional-api}.
\item[New numarray functions] This last facet of the C-API consists of function
  calls which have been added to numarray which are orthogonal to each of the 3
  native access APIs and not part of the original Numeric. See section
  \ref{sec:C-API:new-numarray-functions}
\end{description}

\section{Numarray extension basics}
There's a couple things you need to do in order to access numarray's C-API in
your own C extension module:

\subsection{Include libnumarray.h}
  Near the top of your extension module add the lines:
\begin{verbatim}
  #include "Python.h"
  #include "libnumarray.h"
\end{verbatim} 
  This gives your C-code access to the numarray typedefs, macros, and function
  prototypes as well as the Python C-API.

  \subsection{Alternate include method}
  There's an alternate form of including libnumarray.h or arrayobject.h some
  people may prefer provided that they're willing to ignore the case where the
  numarray includes are not installed in the standard location.  The advantage
  of the following approach is that it automatically works with the default
  path to the Python include files which the distutils always provide.
  \begin{verbatim}
    #include "Python.h"
    #include "numarray/libnumarray.h"
  \end{verbatim}

\subsection{Import libnumarray}
  In your extension module's initialization function, add the line:
\begin{verbatim}
  import_libnumarray();
\end{verbatim} 
  
  import_libnumarray() is actually a macro which sets up a pointer to the
  numarray C-API function pointer table. If you forget to call
  import_libnumarray(), your extension module will crash as soon as you call a
  numarray API function, because your application will attempt to dereference a
  NULL pointer.

  Note that for the Numeric compatible API you should substitute arrayobject.h
  for libnumarray.h and import_array() for import_libnumarray() respectively.
  Unlike other versions of numarray prior to 1.0, arrayobject.h now includes
  only the Numeric simulation API.  To use the rest of the numarray API, you
  \emph{must} include libnumarray.h.  To use both, you must include both
  arrayobject.h and libnumarray.h, and you must both import_array() and
  import_libnumarray() in your module initialization function.

  \subsection{Writing a simple setup.py file for a numarray extension}
  One important practice for writing an extension module is the creation of a
  distutils setup.py file which automates both extension installation from
  source and the creation of binary distributions.  Here is a simple setup.py
  which builds a single extension module from a single C source file:
  \begin{verbatim}
    from distutils.core import setup, Extension
    from numarray.numarrayext import NumarrayExtension
    import sys
    
    if not hasattr(sys, 'version_info') or sys.version_info < (2,2,0,'alpha',0):        raise SystemExit, "Python 2.2 or later required to build this module."
    
    setup(name = "buildHistogram",
       version = "0.1",
       description = "",
       packages=[""],
       package_dir={"":""},
       ext_modules=[NumarrayExtension("buildHistogram",['buildHistogram.c'],\
         include_dirs=["./"],
         library_dirs=["./"],
         libraries=['m'])])
\end{verbatim}
\class{NumarrayExtension} is recommended rather than it's distutils baseclass
\class{Extension} because \class{NumarrayExtension} knows where to find the
numarray headers regardless of where the numarray installer or setup.py command
line options put them.  A disadvantage of using NumarrayExtension is that it
is numarray specific, so it does not work for compiling Numeric versions of the
extension.

See the Python manuals ``Installing Python Modules'' and ``Distributing Python
Modules'' for more information on how to use distutils.

\section{Fundamental data structures}
\label{C-API:fundamental-data-structures}

\subsection{Numarray Numerical Data Types}

Numarray hides the C implementation of its basic array elements behind a set of
C typedefs which specify the absolute size of the type in bits.  This approach
enables a programmer to specify data items of arrays and extension functions in
an explicit yet portable manner.  In contrast, basic C types are platform
relative, and so less useful for describing real physical data.  Here are the
names of the concrete Numarray element types:

\begin{itemize}
\item Bool                
\item Int8,      UInt8
\item Int16,     UInt16
\item Int32,     UInt32
\item Int64,     UInt64
\item Float32,   Float64
\item Complex32, Complex64
\end{itemize}

\subsection{NumarrayType}

The type of a numarray is communicated in C via one of the following
enumeration constants.  Type codes which are backwards compatible with Numeric
are defined in terms of these constants, but use these if you're not already
using the Numeric codes.  These constants communicate type requirements between
one function and another, since in C, you cannot pass a typedef as a value.
tAny is used to specify both ``no type requirement'' and ``no known type''
depending on context.   

\begin{verbatim}
typedef enum 
{
  tAny,

  tBool,
  tInt8,      tUInt8,
  tInt16,     tUInt16,
  tInt32,     tUInt32, 
  tInt64,     tUInt64,
  tFloat32,   tFloat64,
  tComplex32, tComplex64,

  tDefault = tFloat64,

#if LP64
  tLong = tInt64
#else
  tLong = tInt32
#endif

} NumarrayType;
\end{verbatim}

\subsection{PyArray_Descr}

\ctype{PyArray_Descr} is used to hold a few parameters related to the type of
an array and exists mostly for backwards compatability with Numeric.
\var{type_num} is a NumarrayType value.  \var{elsize} indicates the number of
bytes in one element of an array of that type.  \var{type} is a Numeric
compatible character code.

Numarray's \ctype{PyArray_Descr} is currently missing the type-casting,
\function{ones}, and \function{zeroes} functions.  Extensions which use these
missing Numeric features will not yet compile.  Arrays of type Object are not
yet supported.

\begin{verbatim}

typedef struct {
        int  type_num;  /* PyArray_TYPES */
        int  elsize;    /* bytes for 1 element */
        char type;      /* One of "cb1silfdFD "  Object arrays not supported. */
} PyArray_Descr;

\end{verbatim}

\subsection{PyArrayObject}

The fundamental data structure of numarray is the PyArrayObject, which is named
and layed out to provide source compatibility with Numeric.  It is compatible
with most but not all Numeric code.  The constant MAXDIM, the maximum number of
dimensions in an array, is defined as 40.  It should be noted that unlike
earlier versions of numarray, the present PyArrayObject structure is a first
class python object, with full support for the number protocols in C.
Well-behaved arrays have mutable fields which will reflect modifications back
into \python ``for free''.

\begin{verbatim}

typedef int maybelong;          /* towards 64-bit without breaking extensions. */

typedef struct {
        /* Numeric compatible stuff */

        PyObject_HEAD
        char *data;              /* points to the actual C data for the array */
        int nd;                  /* number of array shape elements */
        maybelong *dimensions;   /* values of shape elements */
        maybelong *strides;      /* values of stride elements */
        PyObject *base;          /* unused, but don't touch! */
        PyArray_Descr *descr;    /* pointer to descriptor for this array's type */
        int flags;               /* bitmask defining various array properties */

        /* numarray extras */

        maybelong _dimensions[MAXDIM];  /* values of shape elements */
        maybelong _strides[MAXDIM];     /* values of stride elements */
        PyObject *_data;       /* object must meet buffer API */
        PyObject *_shadows;    /* ill-behaved original array. */
        int      nstrides;     /* elements in strides array */
        long     byteoffset;   /* offset into buffer where array data begins */
        long     bytestride;   /* basic seperation of elements in bytes */
        long     itemsize;     /* length of 1 element in bytes */

        char      byteorder;   /* NUM_BIG_ENDIAN, NUM_LITTLE_ENDIAN */

        char      _unused0; 
        char      _unused1; 
        
        /* Don't expect the following vars to stay around.  Never use them.
        They're an implementation detail of the get/set macros. */

        Complex64      temp;   /* temporary for get/set macros */
        char *         wptr;   /* working pointer for get/set macros */
} PyArrayObject;

\end{verbatim}

\subsection{Flag Bits}

The following are the definitions for the bit values in the \var{flags} field
of each numarray.  Low order bits are Numeric compatible,  higher order bits
were added by numarray.

\begin{verbatim}
/* Array flags */
#define CONTIGUOUS        1       /* compatible, depends */
#define OWN_DIMENSIONS    2       /* always false */
#define OWN_STRIDES       4       /* always false */
#define OWN_DATA          8       /* always false */
#define SAVESPACE      0x10       /* not used */

#define ALIGNED       0x100       /* roughly: data % itemsize == 0 */
#define NOTSWAPPED    0x200       /* byteorder == sys.byteorder    */
#define WRITABLE      0x400       /* data buffer is writable       */

#define IS_CARRAY (CONTIGUOUS | ALIGNED | NOTSWAPPED)
\end{verbatim}

\section{Numeric simulation API}
\label{sec:C-API:numeric-simulation}

These notes describe the Numeric compatability functions which enable numarray
to utilize a subset of the extensions written for Numeric (NumPy).  Not all
Numeric C-API features and therefore not all Numeric extensions are currently
supported.  Users should be able to utilize suitable extensions written for
Numeric within the numarray environment by:

\begin{enumerate}
\item Writing a numarray setup.py file.
\item Scanning the extension C-code for all instances of array creation and
  return and making corrections as needed and specified below. 
\item Re-compiling the Numeric C-extension for numarray.
\end{enumerate}

Numarray's compatability with Numeric consists of 3 things:
\begin{enumerate}
\item A replacement header file, "arrayobject.h" which supplies simulation
   functions and macros for numarray just as the original arrayobject.h
   supplies the C-API for Numeric.
\item Layout and naming of the fundamental numarray C-type,
\ctype{PyArrayObject}, in a Numeric source compatible way.
\item A set of "simulation" functions.  These functions have the same names and
   parameters as the original Numeric functions, but operate on numarrays.  The
   simulation functions are also incomplete; features not currently supported
   should result in compile time warnings.
\end{enumerate}

\subsection{Simulation Functions}
\label{sec:C-API:compat:simulation-functions}

The basic use of numarrays by Numeric extensions is achieved in the extension
function's wrapper code by:
\begin{enumerate}
\item Ensuring creation of array objects by calls to simulation functions.
\item DECREFing each array or calling PyArray_Return.
\end{enumerate}

Unlike prior versions of numarray, this version *does* support access to array
objects straight out of PyArg_ParseTuple.  This is a consequence of a change to
the underlying object model, where a class instance has been replaced by
PyArrayObject.  Nevertheless, the ``right'' way to access arrays is either via
the high level interface or via emulated Numeric factory functions.  That way,
access to other python sequences is supported as well.  Using the ``right'' way
for numarray is also more important than for Numeric because numarray arrays
may be byteswapped or misaligned and hence unusable from simple C-code.  It
should be noted that the numarray and Numeric are not completely compatible,
and therefore this API does not provide support for string arrays or object
arrays.

The creation of array objects is illustrated by the following of wrapper code
for a 2D convolution function:

\begin{verbatim}
#include "python.h"
#include "arrayobject.h"

static PyObject *
Py_Convolve2d(PyObject *obj, PyObject *args)
{
        PyObject   *okernel, *odata, *oconvolved=Py_None;
        PyArrayObject *kernel, *data, *convolved;

        if (!PyArg_ParseTuple(args, "OO|O", &okernel, &odata, &oconvolved)) {
                return PyErr_Format(_Error, 
                                    "Convove2d: Invalid parameters.");  
                goto _fail;
        }
\end{verbatim}

The first step was simply to get object pointers to the numarray parameters to
the convolution function: okernel, odata, and oconvolved.  Oconvolved is an
optional output parameter, specified with a default value of Py_None which is
used when only 2 parameters are supplied at the python level.  Each of the
``o'' parameters should be thought of as an arbitrary sequence object, not
necessarily an array.

The next step is to call simulation functions which convert sequence objects
into PyArrayObjects.  In a Numeric extension, these calls map tuples and lists
onto Numeric arrays and assert their dimensionality as 2D.  The Numeric
simulation functions first map tuples, lists, and misbehaved numarrays onto
well-behaved numarrays.  Calls to these functions transparently use the
numarray high level interface and provide visibility only to aligned and
non-byteswapped array objects.

\begin{verbatim}
        kernel = (PyArrayObject *) PyArray_ContiguousFromObject(
                okernel, PyArray_DOUBLE, 2, 2);
        data = (PyArrayObject *) PyArray_ContiguousFromObject(
                odata, PyArray_DOUBLE, 2, 2);

        if (!kernel || !data) goto _fail;
\end{verbatim}

Extra processing is required to handle the output array \var{convolved},
cloning it from \var{data} if it was not specified.  Code should be supplied,
but is not, to verify that convolved and data have the same shape.  

\begin{verbatim}
        if (convolved == Py_None)
                convolved = (PyArrayObject *) PyArray_FromDims(
                        data->nd, data->dimensions, PyArray_DOUBLE);
        else
                convolved = (PyArrayObject *) PyArray_ContiguousFromObject(
                        oconvolved, PyArray_DOUBLE, 2, 2);
        if (!convolved) goto _fail;
\end{verbatim}

After converting all of the input paramters into \ctype{PyArrayObject}s, the
actual convolution is performed by a seperate function.  This could just as
well be done inline:

\begin{verbatim}
        Convolve2d(kernel, data, convolved);
\end{verbatim}

After processing the arrays, they should be DECREF'ed or returned using
\cfunction{PyArray_Return}.  It is generally not possible to directly return a
numarray object using \cfunction{Py_BuildValue} because the shadowing of
mis-behaved arrays needs to be undone.  Calling \cfunction{PyArray_Return}
destroys any temporary and passes the numarray back to \python.

\begin{verbatim}
        Py_DECREF(kernel);
        Py_DECREF(data);
        if (convolved != Py_None) {
                Py_DECREF(convolved);
                Py_INCREF(Py_None);
                return Py_None;
        } else
                return PyArray_Return(convolved);
_fail:
        Py_XDECREF(kernel);
        Py_XDECREF(data);
        Py_XDECREF(convolved);
        return NULL;
}
\end{verbatim}

Byteswapped or misaligned arrays are handled by a process of shadowing which
works like this:
\begin{enumerate}
\item When a "misbehaved" numarray is accessed via the Numeric simulation
  functions, first a well-behaved temporary copy (shadow) is created by
  NA_IoArray.
\item Operations performed by the extension function modifiy the data buffer
  belonging to the shadow.
\item On extension function exit, the shadow array is copied back onto the 
  original and the shadow is freed.
\end{enumerate}
All of this is transparent to the user; if the original array is well-behaved,
it works much like it always did; if not, what would have failed altogether
works at the cost of extra temporary storage.  Users which cannot afford the
cost of shadowing need to use numarray's native elementwise or 1D APIs.
\subsection{Numeric Compatible Functions}
\label{sec:C-API:compat:implemented-functions}

The following functions are currently implemented:
\begin{cfuncdesc}{PyObject*}{PyArray_FromDims}{int nd, int *dims, int type}
   This function will allocate a new numarray.

   An array created with PyArray_FromDims can be used as a temporary or
   returned using PyArray_Return.
   
   Used as a temporary, calling Py_DECREF deallocates it.   
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyArray_FromDimsAndData}{int nd, int *dims, int type, char *data}
   This function will allocate a numarray of the specified shape and type
   which will refer to the data buffer specified by \var{data}.  The contents
   of \var{data} will not be copied nor will \var{data} be deallocated upon
   the deletion of the array.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyArray_ContiguousFromObject}{%
      PyObject *op, int type, int min_dim, int max_dim}% Returns an simulation
   object for a contiguous numarray of 'type' created from the sequence object
   'op'.  If 'op' is a contiguous, aligned, non-byteswapped numarray, then the
   simulation object refers to it directly.  Otherwise a well-behaved numarray
   will be created from 'op' and the simulation object will refer to it.
   min_dim and max_dim bound the expected rank as in Numeric.
   \code{min_dim==max_dim} specifies an exact rank.  \code{min_dim==max_dim==0}
   specifies \emph{any} rank.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyArray_CopyFromObject}{%
      PyObject *op, int type, int min_dim, int max_dim}% Returns a contiguous
   array, similar to PyArray_FromContiguousObject, but always returning an
   simulation object referring to a new numarray copied from the original
   sequence.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyArray_FromObject}{%
      PyObject  *op, int type, int min_dim, int max_dim}%
   Returns and simulation object based on 'op', possibly discontiguous.  The
   strides array must be used to access elements of the simulation object.
   
   If 'op' is a byteswapped or misaligned numarray, FromObject creates a
   temporary copy and the simulation object refers to it.
   
   If 'op' is a nonswapped, aligned numarray, the simulation object refers to
   it.
   
   If 'op' is some other sequence, it is converted to a numarray and the
   simulation object refers to that.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyArray_Return}{PyArrayObject *apr}
   Returns simulation object 'apr' to python.  The simulation object itself is
   destructed.  The numarray it refers to (base) is returned as the result of
   the function.
   
   An additional check is (or eventually will be) performed to guarantee that
   rank-0 arrays are converted to appropriate python scalars.
   
   PyArray_Return has no net effect on the reference count of the underlying
   numarray.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyArray_As1D}{PyObject **op, char **ptr, int *d1, int typecode}
   Copied from Numeric verbatim.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyArray_As2D}{PyObject **op, char ***ptr, int *d1, int *d2, int typecode}
   Copied from Numeric verbatim.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyArray_Free}{PyObject *op, char *ptr}
   Copied from Numeric verbatim. \note{This means including bugs and all!}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyArray_Check}{PyObject *op}
   This function returns 1 if op is a PyArrayObject.  
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyArray_Size}{PyObject *op}
   This function returns the total element count of the array.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyArray_NBYTES}{PyArrayObject *op}
   This function returns the total size in bytes of the array, and assumes that
bytestride == itemsize, so that the size is product(shape)*itemsize.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyArray_Copy}{PyArrayObject *op}
   This function returns a copy of the array 'op'.  The copy returned is
   guaranteed to be well behaved, i.e. neither byteswapped nor misaligned.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyArray_CanCastSafely}{PyArrayObject *op, int type}
  This function returns 1 IFF the array 'op' can be safely cast to 'type',
otherwise it returns 0.
\end{cfuncdesc}

\begin{cfuncdesc}{PyArrayObject*}{PyArray_Cast}{PyArrayObject *op, int type}
  This function casts the array 'op' into an equivalent array of type 'type'.
\end{cfuncdesc}

\begin{cfuncdesc}{PyArray_Descr*}{PyArray_DescrFromType}{int type}
This function returns a pointer to the array descriptor for 'type'.  The
numarray version of PyArray_Descr is incomplete and does not support casting,
getitem, setitem, one, or zero.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyArray_isArray(PyObject *o)}
  This macro is designed to fail safe and return 0 when numarray is not
  installed at all.  When numarray is installed, it returns 1 iff object 'o' is
  a numarray, and 0 otherwise.  This macro facilitates the optional use of
  numarray within an extension.
\end{cfuncdesc}

\subsection{Unsupported Numeric Features}
\label{sec:C-API:compat:unsupported}

\begin{itemize}
\item PyArrayError 
\item PyArray_ObjectType() 
\item PyArray_Reshape()
\item PyArray_SetStringFunction() 
\item PyArray_SetNumericOps() 
\item PyArray_Take()
\item UFunc API
\end{itemize}

\section{High-level API}
\label{sec:C-API:high-level-api}

The high-level native API accepts an object (which may or may not be an array)
and transforms the object into an array which satisfies a set of ``behaved-ness
requirements''.  The idea behind the high-level API is to transparently convert
misbehaved numarrays, ordinary sequences, and python scalars into C-arrays.  A
``misbehaved array'' is one which is byteswapped, misaligned, or discontiguous.
This API is the simplest and fastest, provided that your arrays are small.  If
you find your program is exhausting all available memory, it may be time to
look at one of the other APIs.

\subsection{High-level functions}
\label{sec:C-API:high-level-functions}

The high-level support functions for interchanging \class{numarray}s between
\python{} and C are as follows:

\begin{cfuncdesc}{PyArrayObject*}{NA_InputArray}{%
      PyObject *seq, NumarrayType t, int requires}
The purpose of NA_InputArray is to transfer array data from \python to C.
\end{cfuncdesc}

\begin{cfuncdesc}{PyArrayObject*}{NA_OutputArray}{%
      PyObject *seq, NumarrayType t, int requires} The purpose of
NA_OutputArray is to transfer data from C to \python.  The output array must be
a PyArrayObject, i.e. it cannot be an arbitrary Python sequence.
\end{cfuncdesc}

\begin{cfuncdesc}{PyArrayObject*}{NA_IoArray}{%
      PyObject *seq, NumarrayType t, int requires} NA_IoArray has fully
bidirectional data transfer, creating the illusion of call-by-reference.
\end{cfuncdesc}

  For a well-behaved writable array, there is no difference between the three,
  as no temporary is created and the returned object is identical to the
  original object (with an additional reference).  For a mis-behaved input
  array, a well-behaved temporary will be created and the data copied from the
  original to the temporary.  Since it is an input, modifications to its
  contents are not guaranteed to be reflected back to \python, and in the case
  where a temporary was created, won't be.  For a mis-behaved output array, any
  data side-effects generated by the C code will be safely communicated back to
  \python, but the initial array contents are undefined.  For an I/O array, any
  required temporary will be initialized to the same contents as the original
  array, and any side-effects caused by C-code will be copied back to the
  original array.  The array factory routines of the Numeric compatability API
  are written in terms of NA_IoArray.
   
   The return value of each function (\cfunction{NA_InputArray},
   \cfunction{NA_OutputArray}, or \cfunction{NA_IoArray}) is either a reference
   to the original array object, or a reference to a temporary array.
   Following execution of the C-code in the extension function body this
   pointer should \emph{always} be DECREFed.  When a temporary is DECREFed, it
   is deallocated, possibly after copying itself onto the original array.  The
   one exception to this rule is that you should not DECREF an array returned
   via the NA_ReturnOutput function.
   
   The \var{seq} parameter specifies the original numeric sequence to be
   interfaced.  Nested lists and tuples of numbers can be converted by
   \cfunction{NA_InputArray} and \cfunction{NA_IoArray} into a temporary array.
   The temporary is lost on function exit.  Strictly speaking, allowing
   NA_IoArray to accept a list or tuple is a wart, since it will lose any side
   effects.  In principle, communication back to lists and tuples can be
   supported but is not currently.
   
   The \var{t} parameter is an enumeration value which defines the type the
   array data should be converted to.  Arrays of the same type are passed
   through unaltered, while mis-matched arrays are cast into temporaries of the
   specified type.  The value \constant{tAny} may be specified to indicate that
   the extension function can handle any type correctly so no temporary should
   is required.
   
   The \var{requires} integer indicates under what conditions, other than type
   mismatch, a temporary should be made.  The simple way to specify it is to
   use \constant{NUM_C_ARRAY}.  This will cause the API function to make a
   well-behaved temporary if the original is byteswapped, misaligned, or
   discontiguous.  

There is one other pair of high level function which serves to return output
arrays as the function value: NA_OptionalOutputArray and NA_ReturnOutput.

\begin{cfuncdesc}{PyArrayObject*}{NA_OptionalOutputArray}{%
      PyObject *seq, NumarrayType t, int requires, PyObject *master}%
   \cfunction{NA_OptionalOutputArray} is essentially
   \cfunction{NA_OutputArray}, but with one twist: if the original array
   \var{seq} has the value \constant{NULL} or \constant{Py_None}, a copy of
   \var{master} is returned.  This facilitates writing functions where the
   output array may or may-not be specified by the \python{} user.  
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{NA_ReturnOutput}{PyObject *seq, PyObject *shadow}
   \cfunction{NA_ReturnOutput} accepts as parameters both the original
   \var{seq} and the value returned from
   \cfunction{NA_OptionalOutputArray}, \var{shadow}.  If \var{seq} is
   \constant{Py_None} or \constant{NULL}, then \var{shadow} is returned.
   Otherwise, an output array was specified by the user, and \constant{Py_None}
   is returned.  This facilitates writing functions in the numarray style
   where the specification of an output array renders the function ``mute'',
   with all side-effects in the output array and None as the return value.
\end{cfuncdesc}

\subsection{Behaved-ness Requirements}

Calls to the high level API specify a set of requirements that incoming arrays
must satisfy.  The requirements set is specified by a bit mask which is or'ed
together from bits representing individual array requirements.  An ordinary C
array satisfies all 3 requirements: it is contiguous, aligned, and not
byteswapped.  It is possible to request arrays satisfying any or none of the
behavedness requirements.  Arrays which do not satisfy the specified
requirements are transparently ``shadowed'' by temporary arrays which do
satisfy them.  By specifying \constant{NUM_UNCONVERTED}, a caller is certifying
that his extension function can correctly and directly handle the special cases
possible for a \class{NumArray}, excluding type differences.

\begin{verbatim}
typedef enum
{
        NUM_CONTIGUOUS=1,
        NUM_NOTSWAPPED=2,
        NUM_ALIGNED=4,
        NUM_WRITABLE=8,
        NUM_COPY=16,

        NUM_C_ARRAY  = (NUM_CONTIGUOUS | NUM_ALIGNED | NUM_NOTSWAPPED),
        NUM_UNCONVERTED = 0
}
\end{verbatim}

\function{NA_InputArray} will return a guaranteed writable result if
\constant{NUM_WRITABLE} is specified. A writable temporary will be made for
arrays which have readonly buffers.  Any changes made to a writable input array
\emph{may} be lost at extension exit time depending on whether or not a
temporary was required.  \function{NA_InputArray} will also return a guaranteed
writable result by specifying \constant{NUM_COPY}; with \constant{NUM_COPY}, a
temporary is \emph{always} made and changes to it are \emph{always} lost at
extension exit time.

Omitting \constant{NUM_WRITABLE} and \constant{NUM_COPY} from the
\var{requires} of \function{NA_InputArray} asserts that you will not modify the
array buffer in your C code.  Readonly arrays (e.g. from a readonly memory map)
which you attempt to modify can result in a segfault if \constant{NUM_WRITABLE}
or \constant{NUM_COPY} was not specified.

Arrays passed to \function{NA_IoArray} and \function{NA_OutputArray} must be
writable or they will raise an exception; specifing \constant{NUM_WRITABLE} or
\constant{NUM_COPY} to these functions has no effect.

\subsection{Example}
\label{sec:C-API:high-level:example}

A C wrapper function using the high-level API would typically look like the
following.\footnote{This function is taken from the convolve example in the
source distribution.}

\begin{verbatim}
#include "Python.h"
#include "libnumarray.h"

static PyObject *
Py_Convolve1d(PyObject *obj, PyObject *args)
{
        PyObject   *okernel, *odata, *oconvolved=Py_None;
        PyArrayObject *kernel, *data, *convolved;

        if (!PyArg_ParseTuple(args, "OO|O", &okernel, &odata, &oconvolved)) {
                PyErr_Format(_convolveError, 
                             "Convolve1d: Invalid parameters.");
                goto _fail;
        }

\end{verbatim}

First, define local variables and parse parameters.  \cfunction{Py_Convolve1d}
expects two or three array parameters in \var{args}: the convolution kernel,
the data, and optionally the return array.  We define two variables for each
array parameter, one which represents an arbitrary sequence object, and one
which represents a PyArrayObject which contains a conversion of the sequence.
If the sequence object was already a well-behaved numarray, it is returned
without making a copy.

\begin{verbatim}
        /* Align, Byteswap, Contiguous, Typeconvert */
        kernel  = NA_InputArray(okernel, tFloat64, NUM_C_ARRAY);
        data    = NA_InputArray(odata, tFloat64, NUM_C_ARRAY);
        convolved = NA_OptionalOutputArray(oconvolved, tFloat64, NUM_C_ARRAY, data);

        if (!kernel || !data || !convolved) {
                PyErr_Format( _convolveError, 
                             "Convolve1d: error converting array inputs.");
                goto _fail;
        }
\end{verbatim}

These calls to NA_InputArray and OptionalOutputArray require that the arrays be
aligned, contiguous, and not byteswapped, and of type Float64, or a temporary
will be created.  If the user hasn't provided a output array we ask
\cfunction{NA_OptionalOutputArray} to create a copy of the input \var{data}.
We also check that the array screening and conversion process succeeded by
verifying that none of the array pointers is NULL.

\begin{verbatim}
        if ((kernel->nd != 1) || (data->nd != 1)) {
                PyErr_Format(_convolveError,
                      "Convolve1d: arrays must have 1 dimension.");
                goto _fail;
        }

        if (!NA_ShapeEqual(data, convolved)) {
                PyErr_Format(_convolveError,
                "Convolve1d: data and output arrays need identitcal shapes.");
                goto _fail;
        }
\end{verbatim}

Make sure we were passed one-dimensional arrays, and data and output have the
same size.

\begin{verbatim}
        Convolve1d(kernel->dimensions[0], NA_OFFSETDATA(kernel),
                   data->dimensions[0],   NA_OFFSETDATA(data),
                   NA_OFFSETDATA(convolved));
\end{verbatim}

Call the C function actually performing the work.  NA_OFFSETDATA returns the
pointer to the first element of the array,  adjusting for any byteoffset.

\begin{verbatim}
        Py_XDECREF(kernel);
        Py_XDECREF(data);
\end{verbatim}

Decrease the reference counters of the input arrays.  These were increased by
\cfunction{NA_InputArray}.  Py_XDECREF tolerates NULL.  DECREF'ing the
PyArrayObject is how temporaries are released and in the case of
IO and Output arrays, copied back onto the original.

\begin{verbatim}
        /* Align, Byteswap, Contiguous, Typeconvert */
        return NA_ReturnOutput(oconvolved, convolved);
_fail:
        Py_XDECREF(kernel);
        Py_XDECREF(data);
        Py_XDECREF(convolved);
        return NULL;
}
\end{verbatim}

Now return the results, which are either stored in the user-supplied array
\var{oconvolved} and \constant{Py_None} is returned, or if the user didn't
supply an output array the temporary \var{convolved} is returned.

If your C function creates the output array you can use the following sequence
to pass this array back to \python{}:

\begin{verbatim}
        double *result;
        int m, n;
        .
        .
        .
        result = func(...);
        if(NULL == result)
            return NULL;
        return NA_NewArray((void *)result, tFloat64, 2, m, n);
}
\end{verbatim}

The C function \cfunction{func} returns a newly allocated (m, n) array in
\var{result}.  After we check that everything is ok, we create a new numarray
using \cfunction{NA_NewArray} and pass it back to \python.  \cfunction{NA_NewArray}
creates a \class{numarray} with \constant{NUM_C_ARRAY} properties.  If you wish to
create an array that is byte-swapped, or misaligned, you can use
\cfunction{NA_NewAll}.

The C-code of the core convolution function is uninteresting.  The main point
of the example is that when using the high-level API, numarray specific code is
confined to the wrapper function.  The interface for the core function can be
written in terms of primitive numarray/C data items, not objects.  This is
possible because the high level API can be used to deliver C arrays.

\begin{verbatim}
static void Convolve1d(long ksizex, Float64 *kernel, 
     long dsizex, Float64*data, Float64 *convolved) 
{ 
  long xc; long halfk = ksizex/2;

  for(xc=0; xc<halfk; xc++)
      convolved[xc] = data[xc];
  
  for(xc=halfk; xc<dsizex-halfk; xc++) {
      long xk;
      double temp = 0;
      for (xk=0; xk<ksizex; xk++)
         temp += kernel[xk]*data[xc-halfk+xk];
      convolved[xc] = temp;
  }
  
  for(xc=dsizex-halfk; xc<dsizex; xc++)
     convolved[xc] = data[xc];
}
\end{verbatim}

\section{Element-wise API}
\label{sec:C-API:element-wise-api}

The element-wise in-place API is a family of macros and functions designed to
get and set elements of arrays which might be byteswapped, misaligned,
discontiguous, or of a different type.  You can obtain \class{PyArrayObject}s
for these misbehaved arrays from the high-level API by specifying fewer
requirements (perhaps just 0, rather than NUM_C_ARRAY).  In this way, you can
avoid the creation of temporaries at a cost of accessing your array with these
macros and functions and a significant performance penalty.  Make no mistake,
if you have the memory, the high level API is the fastest.  The whole point of
this API is to support cases where the creation of temporaries exhausts either
the physical or virtual address space.  Exhausting physical memory will result
in thrashing, while exhausting the virtual address space will result in program
exception and failure.  This API supports avoiding the creation of the
temporaries, and thus avoids exhausting physical and virual memory, possibly
improving net performance or even enabling program success where simpler
methods would just fail.

\subsection{Element-wise functions}
\label{sec:C-API:element-wise:functions}

The single element macros each access one element of an array at a time, and
specify the array type in two places: as part of the PyArrayObject type
descriptor, and as ``type''.  The former defines what the array is, and the
latter is required to produce correct code from the macro.  They should
\emph{match}.  When you pass ``type'' into one of these macros, you are
defining the kind of array the code can operate on.  It is an error to pass a
non-matching array to one of these macros.  One last piece of advice: call
these macros carefully, because the resulting expansions and error messages are
a *obscene*.  Note: the type parameter for a macro is one of the Numarray
Numeric Data Types, not a NumarrayType enumeration value.

\subsubsection{Pointer based single element macros}
\label{sec:C-API:pointer-based-single}

\begin{cfuncdesc}{}{NA_GETPa}{PyArrayObject*, type, char*}
   aligning
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GETPb}{PyArrayObject*, type, char*}
   byteswapping
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GETPf}{PyArrayObject*, type, char*}
   fast (well-behaved)
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GETP}{PyArrayObject*,  type, char*}
   testing: any of above
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SETPa}{PyArrayObject*, type, char*, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SETPb}{PyArrayObject*, type, char*, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SETPf}{PyArrayObject*, type, char*, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SETP}{PyArrayObject*,  type, char*, v}
\end{cfuncdesc}

\subsubsection{One index single element macros}
\begin{cfuncdesc}{}{NA_GET1a}{PyArrayObject*, type, i}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GET1b}{PyArrayObject*, type, i}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GET1f}{PyArrayObject*, type, i}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GET1}{PyArrayObject*,  type, i}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET1a}{PyArrayObject*, type, i, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET1b}{PyArrayObject*, type, i, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET1f}{PyArrayObject*, type, i, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET1}{PyArrayObject*,  type, i, v}
\end{cfuncdesc}

\subsubsection{Two index single element macros}
\begin{cfuncdesc}{}{NA_GET2a}{PyArrayObject*, type, i, j}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GET2b}{PyArrayObject*, type, i, j}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GET2f}{PyArrayObject*, type, i, j}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GET2}{PyArrayObject*,  type, i, j}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET2a}{PyArrayObject*, type, i, j, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET2b}{PyArrayObject*, type, i, j, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET2f}{PyArrayObject*, type, i, j, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET2}{PyArrayObject*,  type, i, j, v}
\end{cfuncdesc}

\subsubsection{One and Two Index, Offset, Float64/Complex64/Int64 functions}

The \class{Int64}/\class{Float64}/\class{Complex64} functions require a
function call to access a single element of an array, making them slower than
the single element macros.  They have two advantages:
\begin{enumerate}
\item They're function calls, so they're a little more robust. 
\item They can handle \emph{any} input array type and behavior properties.
\end{enumerate}


While these functions have no error return status, they *can* alter the Python
error state, so well written extensions should call
\cfunction{PyErr_Occurred()} to determine if an error occurred and report it.
It's reasonable to do this check once at the end of an extension function,
rather than on a per-element basis.


\begin{cfuncdesc}{}{void NA_get_offset}{PyArrayObject *, int N, ...}
  \cfunction{NA_get_offset} computes the offset into an array object given a
  variable number of indices.  It is not especially robust, and it is
  considered an error to pass it more indices than the array has, or indices
  which are negative or out of range.
\end{cfuncdesc}

\begin{cfuncdesc}{Float64}{NA_get_Float64}{PyArrayObject *, long offset}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set_Float64}{PyArrayObject *, long offset, Float64 v}
\end{cfuncdesc}
\begin{cfuncdesc}{Float64}{NA_get1_Float64}{PyArrayObject *, int i}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set1_Float64}{PyArrayObject *, int i, Float64 v}
\end{cfuncdesc}
\begin{cfuncdesc}{Float64}{NA_get2_Float64}{PyArrayObject *, int i, int j}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set2_Float64}{PyArrayObject *, int i, int j, Float64 v}
\end{cfuncdesc}

\begin{cfuncdesc}{Int64}{NA_get_Int64}{PyArrayObject *, long offset}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set_Int64}{PyArrayObject *, long offset, Int64 v}
\end{cfuncdesc}
\begin{cfuncdesc}{Int64}{NA_get1_Int64}{PyArrayObject *, int i}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set1_Int64}{PyArrayObject *, int i, Int64 v}
\end{cfuncdesc}
\begin{cfuncdesc}{Int64}{NA_get2_Int64}{PyArrayObject *, int i, int j}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set2_Int64}{PyArrayObject *, int i, int j, Int64 v}
\end{cfuncdesc}

\begin{cfuncdesc}{Complex64}{NA_get_Complex64}{PyArrayObject *, long offset}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set_Complex64}{PyArrayObject *, long offset, Complex64 v}
\end{cfuncdesc}
\begin{cfuncdesc}{Complex64}{NA_get1_Complex64}{PyArrayObject *, int i}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set1_Complex64}{PyArrayObject *, int i, Complex64 v}
\end{cfuncdesc}
\begin{cfuncdesc}{Complex64}{NA_get2_Complex64}{PyArrayObject *, int i, int j}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set2_Complex64}{PyArrayObject *, int i, int j, Complex64 v}
\end{cfuncdesc}

\subsection{Example}
\label{sec:C-API:element-wise:example}

The \cfunction{convolve1D} wrapper function corresponding to section
\ref{sec:C-API:high-level:example} using the element-wise API could look
like:\footnote{This function is also available as an example in the source
   distribution.}

\begin{verbatim}
static PyObject *
Py_Convolve1d(PyObject *obj, PyObject *args)
{
        PyObject   *okernel, *odata, *oconvolved=Py_None;
        PyArrayObject *kernel, *data, *convolved;

        if (!PyArg_ParseTuple(args, "OO|O", &okernel, &odata, &oconvolved)) {
                PyErr_Format(_Error, "Convolve1d: Invalid parameters.");
                goto _fail;
        }

        kernel = NA_InputArray(okernel, tAny, 0);
        data   = NA_InputArray(odata, tAny, 0);
\end{verbatim}

For the kernel and data arrays, \class{numarray}s of any type are accepted
without conversion.  Thus there is no copy of the data made except for lists or
tuples.  All types, byteswapping, misalignment, and discontiguity must be
handled by Convolve1d.  This can be done easily using the get/set functions.
Macros, while faster than the functions, can only handle a single type.

\begin{verbatim}
        convolved = NA_OptionalOutputArray(oconvolved, tFloat64, 0, data);
\end{verbatim}

Also for the output array we accept any variety of type tFloat without
conversion.  No copy is made except for non-tFloat.  Non-numarray sequences are
not permitted as output arrays.  Byteswaping, misaligment, and discontiguity
must be handled by Convolve1d.  If the \python caller did not specify the
oconvolved array, it initially retains the value Py_None.  In that case,
\var{convolved} is cloned from the array \var{data} using the specified type.
It is important to clone from \var{data} and not \var{odata}, since the latter
may be an ordinary \python sequence which was converted into numarray
\var{data}.  

\begin{verbatim}
        if (!kernel || !data || !convolved)
                goto _fail;

        if ((kernel->nd != 1) || (data->nd != 1)) {
                PyErr_Format(_Error,
                     "Convolve1d: arrays must have exactly 1 dimension.");
                goto _fail;
        }

        if (!NA_ShapeEqual(data, convolved)) {
                PyErr_Format(_Error,
                    "Convolve1d: data and output arrays must have identical length.");
                goto _fail;
        }
        if (!NA_ShapeLessThan(kernel, data)) {
                PyErr_Format(_Error,
                    "Convolve1d: kernel must be smaller than data in both dimensions");
                goto _fail;
        }
        
        if (Convolve1d(kernel, data, convolved) < 0)  /* Error? */
            goto _fail;
        else {
           Py_XDECREF(kernel);
           Py_XDECREF(data);
           return NA_ReturnOutput(oconvolved, convolved);
        }
_fail:
        Py_XDECREF(kernel);
        Py_XDECREF(data);
        Py_XDECREF(convolved);
        return NULL;
}

\end{verbatim}

This function is very similar to the high-level API wrapper, the notable
difference is that we ask for the unconverted arrays \var{kernel} and
\var{data} and \var{convolved}.  This requires some attention in their usage.
The function that does the actual convolution in the example has to use
\cfunction{NA_get*} to read and \cfunction{NA_set*} to set an element of these
arrays, instead of using straight array notation.  These functions perform any
necessary type conversion, byteswapping, and alignment.

\begin{verbatim}
static int
Convolve1d(PyArrayObject *kernel, PyArrayObject *data, PyArrayObject *convolved)
{
        int xc, xk;
        int ksizex = kernel->dimensions[0];
        int halfk = ksizex / 2;
        int dsizex = data->dimensions[0];

        for(xc=0; xc<halfk; xc++)
                NA_set1_Float64(convolved, xc, NA_get1_Float64(data, xc));
                     
        for(xc=dsizex-halfk; xc<dsizex; xc++)
                NA_set1_Float64(convolved, xc, NA_get1_Float64(data, xc));

        for(xc=halfk; xc<dsizex-halfk; xc++) {
                Float64 temp = 0;
                for (xk=0; xk<ksizex; xk++) {
                        int i = xc - halfk + xk;
                        temp += NA_get1_Float64(kernel, xk) * 
                                NA_get1_Float64(data, i);
                }
                NA_set1_Float64(convolved, xc, temp);
        }
        if (PyErr_Occurred())
           return -1;
        else 
           return 0;
}
\end{verbatim}

\section{One-dimensional API}
\label{sec:C-API:One-dimensional-api}

The 1D in-place API is a set of functions for getting/setting elements from the
innermost dimension of an array.  These functions improve speed by moving type
switches, ``behavior tests'', and function calls out of the per-element loop.
The functions get/set a series of consequtive array elements to/from arrays of
\class{Int64}, \class{Float64}, or \class{Complex64}.  These functions are
(even) more intrusive than the single element functions, but have better
performance in many cases.  They can operate on arrays of any type, with the
exception of the Complex64 functions, which only handle Complex64.  The
functions return 0 on success and -1 on failure, with the Python error state
already set.  To be used profitably, the 1D API requires either a large single
dimension which can be processeed in blocks or a multi-dimensional array such
as an image.  In the latter case, the 1D API is suitable for processing one (or
more) scanlines at a time rather than the entire image at once.  See the source
distribution Examples/convolve/one_dimensionalmodule.c for an example of usage.

\begin{cfuncdesc}{long}{NA_get_offset}{PyArrayObject *, int N, ...}
   This function applies a (variable length) set of \var{N} indices to an array
   and returns a byte offset into the array.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_get1D_Int64}{%
      PyArrayObject *, long offset, int cnt, Int64 *out}%
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_set1D_Int64}{%
      PyArrayObject *, long offset, int cnt, Int64 *in}%
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_get1D_Float64}{%
      PyArrayObject *, long offset, int cnt, Float64 *out}%
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_set1D_Float64}{%
      PyArrayObject *, long offset, int cnt, Float64 *in}%
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_get1D_Complex64}{%
      PyArrayObject *, long offset, int cnt, Complex64 *out}%
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_set1D_Complex64}{%
      PyArrayObject *, long offset, int cnt, Complex64 *in}%
\end{cfuncdesc}

\section{New numarray functions}
\label{sec:C-API:new-numarray-functions}

The following array creation functions share similar behavior.  All but one
create a new \class{numarray} using the data specified by \var{data}.  If
\var{data} is NULL, the routine allocates a buffer internally based on the
array shape and type; internally allocated buffers have undefined contents.
The data type of the created array is specified by \var{type}.

There are several functions to create \class{numarray}s at the C level:

\begin{cfuncdesc}{static PyArrayObject*}{NA_NewArray}{%
    void *data, NumarrayType type, int ndim, ...}% 

  \var{ndim} specifies the rank of the array (number of dimensions), and the
  length of each dimension must be given as the remaining (variable length)
  list of \emph{int} parameters.  The following example allocates a 100x100
  uninitialized array of Int32.
\begin{verbatim}
  if (!(array = NA_NewArray(NULL, tInt32, 2, 100, 100)))
      return NULL;
\end{verbatim}
\end{cfuncdesc}

\begin{cfuncdesc}{static PyObject*}{NA_vNewArray}{%
    void *data, NumarrayType type, int ndim, maybelong *shape}% 

  For \function{NA_vNewArray} the length of each dimension must be given in an
  array of \var{maybelong} pointed to by \var{shape}. The following code
  allocates a 2x2 array initialized to a copy of the specified \var{data}.
  \begin{verbatim}
    Int32 data[4] = { 1, 2, 3, 4 };
    maybelong shape[2] = { 2, 2 };
    if (!(array = NA_vNewArray(data, tInt32, 2, shape)))
       return NULL;
  \end{verbatim}
\end{cfuncdesc}

\begin{cfuncdesc}{static PyArrayObject*}{NA_NewAll}{%
    int ndim, maybelong *shape, NumarrayType type, void *data, maybelong
    byteoffset, maybelong bytestride, int byteorder, int aligned, int
    writable}%

    \function{NA_NewAll} is similar to \function{NA_vNewArray} except it
    provides for the specification of additional parameters. \var{byteoffset}
    specifies the byte offset from the base of the data array at which the
    \var{real} data begins.  \var{bytestride} specifies the miminum stride to
    use, the seperation in bytes between adjacent elements in the
    array. \var{byteorder} takes one of the values \constant{NUM_BIG_ENDIAN} or
    \constant{NUM_LITTLE_ENDIAN}.  \var{writable} defines whether the buffer
    object associated with the resulting array is readonly or writable.
\end{cfuncdesc}

\begin{cfuncdesc}{static PyArrayObject*}{NA_NewAllStrides}{%
    int ndim, maybelong *shape, maybelong *strides, NumarrayType type, void
    *data, maybelong byteoffset, maybelong byteorder, int aligned, int
    writable}% 

    \function{NA_NewAllStrides} is a variant of \function{NA_vNewAll} which
    also permits the specification of the array strides.  The strides are not
    checked for correctness.
\end{cfuncdesc}

\begin{cfuncdesc}{static PyArrayObject*}{NA_NewAllFromBuffer}{%
    int ndim, maybelong *shape, NumarrayType type, PyObject *buffer, maybelong
    byteoffset, maybelong bytestride, int byteorder, int aligned, int
    writable}% 

   \function{NA_NewAllFromBuffer} is similar to \function{NA_NewAll} except it
   accepts a buffer object rather than a pointer to C data.  The \var{buffer}
   object must support the buffer protocol.  If \var{buffer} is non-NULL, the
   returned array object stores a reference to \var{buffer} and locates its
   data there.  If \var{buffer} is specified as NULL, a buffer object and
   associated data space are allocated internally and the returned array object
   refers to that.  It is possible to create a Python buffer object from an
   array of C data and then construct a \class{numarray} using this function
   which refers to the C data without making a copy.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_ShapeEqual}{PyArrayObject*a,PyArrayObject*b}
This function compares the shapes of two arrays, and returns 1 if they
are the same, 0 otherwise.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_ShapeLessThan}{PyArrayObject*a,PyArrayObject*b}
This function compares the shapes of two arrays, and returns 1 if each
dimension of 'a' is less than the corresponding dimension of 'b', 0 otherwise.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_ByteOrder}{}
This function returns the system byte order, either NUM_LITTLE_ENDIAN or
NUM_BIG_ENDIAN.
\end{cfuncdesc}

\begin{cfuncdesc}{Bool}{NA_IeeeMask32}{Float32 value, Int32 mask}
This function returns 1 IFF Float32 \var{value} matches any of the IEEE special
value criteria specified by \var{mask}.  See ieeespecial.h for the mask bit
values which can be or'ed together to specify mask.
\function{NA_IeeeSpecial32} has been deprecated and will eventually be removed.
\end{cfuncdesc}

\begin{cfuncdesc}{Bool}{NA_IeeeMask64}{Float64 value,Int32 mask}
This function returns 1 IFF Float64 \var{value} matches any of the IEEE special
value criteria specified by \var{mask}.  See ieeespecial.h for the mask bit
values which can be or'ed together to specify mask.
\function{NA_IeeeSpecial64} has been deprecated and will eventually be removed.
\end{cfuncdesc}

\begin{cfuncdesc}{PyArrayObject *}{NA_updateDataPtr}{PyArrayObject *}
This function updates the values derived from the ``_data'' buffer, namely the
data pointer and buffer WRITABLE flag bit.  This needs to be called upon
entering or re-entering C-code from Python, since it is possible for buffer
objects to move their data buffers as a result of executing arbitrary Python
and hence arbitrary C-code.  The high level interface routines,
e.g. \function{NA_InputArray}, call this routine automatically.
\end{cfuncdesc}

\begin{cfuncdesc}{char*}{NA_typeNoToName}{int}
NA_typeNoToName translates a NumarrayType into a character string which can be
used to display it:  e.g.  tInt32 converts to the string ``Int32''
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{NA_typeNoToTypeObject}{int}
This function converts a NumarrayType C type code into the NumericType object
which implements and represents it more fully.  tInt32 converts to the type
object numarray.Int32.  
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_typeObjectToTypeNo}{PyObject*}
This function converts a numarray type object (e.g. numarray.Int32) into the
corresponding NumarrayType (e.g. tInt32) C type code. 
\end{cfuncdesc}

\begin{cfuncdesc} {PyObject*}{NA_intTupleFromMaybeLongs}{int,maybelong*}
This function creates a tuple of Python ints from an array of C maybelong integers.
\end{cfuncdesc}

\begin{cfuncdesc}{long}{NA_maybeLongsFromIntTuple}{int,maybelong*,PyObject*}
This function fills an array of C long integers with the converted values from
a tuple of Python ints.  It returns the number of conversions, or -1 for error.
\end{cfuncdesc}

\begin{cfuncdesc}{long}{NA_isIntegerSequence}{PyObject*}
This function returns 1 iff the single parameter is a sequence of Python
integers, and 0 otherwise.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{NA_setArrayFromSequence}{PyArrayObject*,PyObject*}
This function copies the elementwise from a sequence object to a numarray.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_maxType}{PyObject*}
This function returns an integer code corresponding to the highest kind of
Python numeric object in a sequence.  INT(0) LONG(1) FLOAT(2) COMPLEX(3).
On error -1 is returned.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{NA_getPythonScalar}{PyArrayObject *a, long offset}
This function returns the Python object corresponding to the single element of 
the array 'a' at the given byte offset.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_setFromPythonScalar}{PyArrayObject *a, long offset, PyObject*value}
This function sets the single element of the array 'a' at the given byte
offset to 'value'.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_NDArrayCheck}{PyObject*o}
This function returns 1 iff the 'o' is an instance of NDArray or an instance of
a subclass of NDArray, and 0 otherwise.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_NumArrayCheck}{PyObject*}
This function returns 1 iff the 'o' is an instance of NumArray or an instance of
a subclass of NumArray, and 0 otherwise.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_ComplexArrayCheck}{PyObject*}
This function returns 1 iff the 'o' is an instance of ComplexArray or an instance of
a subclass of ComplexArray, and 0 otherwise.
\end{cfuncdesc}

\begin{cfuncdesc}{unsigned long}{NA_elements}{PyArrayObject*}
This function returns the total count of elements in an array,  essentially the
product of the elements of the array's shape.
\end{cfuncdesc}

\begin{cfuncdesc}{PyArrayObject *}{NA_copy}{PyArrayObject*}
This function returns a copy of the given array.  The array copy is guaranteed
to be well-behaved, i.e. neither byteswapped, misaligned, nor discontiguous.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_copyArray}{PyArrayObject*to, const PyArrayObject *from}
This function returns a copies one array onto another;  used in f2py.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{NA_swapAxes}{PyArrayObject*a, int dim1, int dim2}
This function mutates the specified array \var{a} to exchange the shape and
strides values for the two dimensions, \var{dim1} and \var{dim2}.  Negative
dimensions count backwards from the innermost, with -1 being the innermost
dimension.  Returns 0 on success and -1 on error.
\end{cfuncdesc}

%% Local Variables:
%% mode: LaTeX
%% mode: auto-fill
%% fill-column: 79
%% indent-tabs-mode: nil
%% ispell-dictionary: "american"
%% reftex-fref-is-default: nil
%% TeX-auto-save: t
%% TeX-command-default: "pdfeLaTeX"
%% TeX-master: "numarray"
%% TeX-parse-self: t
%% End: