1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
|
\chapter{C extension API}
\label{cha:C-API}
\declaremodule{extension}{C-API}
\index{C-API}
\begin{quote}
This chapter describes the different available C-APIs for \module{numarray}
based extension modules.
\end{quote}
While this chapter describes the \module{\numarray}-specifics for writing
extension modules, a basic understanding of \python extension modules is
expected. See \python's \ulink{Extending and
Embedding}{http://www.python.org/doc/current/ext/ext.html} tutorial and the
\ulink{Python/C API}{http://www.python.org/doc/current/api/api.html}.
The numarray C-API has several different facets, and the first three facets
each make different tradeoffs between memory use, speed, and ease of use. An
additional facet provides backwards compatability with legacy Numeric code.
The final facet consists of miscellaneous function calls used to implement
and utilize numarray, that were not part of Numeric.
In addition to most of the basic functionality provided by Numeric, these APIs
provide access to misaligned, byteswapped, and discontiguous \class{numarray}s.
Byteswapped arrays arise in the context of portable binary data formats where
the byteorder specified by the data format is not the same as the host
processor byte order. Misaligned arrays arise in the context of tabular data:
files of records where arrays are superimposed on the column formed by a single
field in the record. Discontiguous arrays arise from operations which permute
the shape and strides of an array, such as reshape.
\begin{description}
\item[Numeric compatability] This API provides a reasonable (if not complete)
simulation of the Numeric C-API. It is written in terms of the numarray
high level API (discussed below) so that misbehaved numarrays are copied
prior to processing with legacy Numeric code. This API was actually written
last because of the extra considerations in numarray not found in Numeric.
Nevertheless, it is perhaps the most important because it enables writing
extension modules which can be compiled for either numarray or Numeric. It
is also very useful for porting existing Numeric code. See section
\ref{sec:C-API:numeric-simulation}.
\item[High-level] This is the cleanest and eaisiest to use API. It creates
temporary arrays to handle difficult cases (discontiguous, byteswapped,
misaligned) in C code. Code using this API is written in terms of a pointer
to a contiguous 1D array of C data. See section
\ref{sec:C-API:high-level-api}.
\item[Element-wise] This API handles misbehaved arrays without creating
temporaries. Code using this API is written to access single elements of
an array via macros or functions. \note{These macros are relatively slow
compared to raw access to C data, and the functions even slower.} See
section \ref{sec:C-API:element-wise-api}.
\item[One-dimensional] Code using this API get/sets consecutive elements of the
inner dimension of an array, enabling the API to factor out tests for
aligment and byteswapping to one test per array rather than one test per
element. Fewer tests means better performance, but at a cost of some
temporary data and more difficult usage. See section
\ref{sec:C-API:One-dimensional-api}.
\item[New numarray functions] This last facet of the C-API consists of function
calls which have been added to numarray which are orthogonal to each of the 3
native access APIs and not part of the original Numeric. See section
\ref{sec:C-API:new-numarray-functions}
\end{description}
\section{Numarray extension basics}
There's a couple things you need to do in order to access numarray's C-API in
your own C extension module:
\subsection{Include libnumarray.h}
Near the top of your extension module add the lines:
\begin{verbatim}
#include "Python.h"
#include "libnumarray.h"
\end{verbatim}
This gives your C-code access to the numarray typedefs, macros, and function
prototypes as well as the Python C-API.
\subsection{Alternate include method}
There's an alternate form of including libnumarray.h or arrayobject.h some
people may prefer provided that they're willing to ignore the case where the
numarray includes are not installed in the standard location. The advantage
of the following approach is that it automatically works with the default
path to the Python include files which the distutils always provide.
\begin{verbatim}
#include "Python.h"
#include "numarray/libnumarray.h"
\end{verbatim}
\subsection{Import libnumarray}
In your extension module's initialization function, add the line:
\begin{verbatim}
import_libnumarray();
\end{verbatim}
import_libnumarray() is actually a macro which sets up a pointer to the
numarray C-API function pointer table. If you forget to call
import_libnumarray(), your extension module will crash as soon as you call a
numarray API function, because your application will attempt to dereference a
NULL pointer.
Note that for the Numeric compatible API you should substitute arrayobject.h
for libnumarray.h and import_array() for import_libnumarray() respectively.
Unlike other versions of numarray prior to 1.0, arrayobject.h now includes
only the Numeric simulation API. To use the rest of the numarray API, you
\emph{must} include libnumarray.h. To use both, you must include both
arrayobject.h and libnumarray.h, and you must both import_array() and
import_libnumarray() in your module initialization function.
\subsection{Writing a simple setup.py file for a numarray extension}
One important practice for writing an extension module is the creation of a
distutils setup.py file which automates both extension installation from
source and the creation of binary distributions. Here is a simple setup.py
which builds a single extension module from a single C source file:
\begin{verbatim}
from distutils.core import setup, Extension
from numarray.numarrayext import NumarrayExtension
import sys
if not hasattr(sys, 'version_info') or sys.version_info < (2,2,0,'alpha',0): raise SystemExit, "Python 2.2 or later required to build this module."
setup(name = "buildHistogram",
version = "0.1",
description = "",
packages=[""],
package_dir={"":""},
ext_modules=[NumarrayExtension("buildHistogram",['buildHistogram.c'],\
include_dirs=["./"],
library_dirs=["./"],
libraries=['m'])])
\end{verbatim}
\class{NumarrayExtension} is recommended rather than it's distutils baseclass
\class{Extension} because \class{NumarrayExtension} knows where to find the
numarray headers regardless of where the numarray installer or setup.py command
line options put them. A disadvantage of using NumarrayExtension is that it
is numarray specific, so it does not work for compiling Numeric versions of the
extension.
See the Python manuals ``Installing Python Modules'' and ``Distributing Python
Modules'' for more information on how to use distutils.
\section{Fundamental data structures}
\label{C-API:fundamental-data-structures}
\subsection{Numarray Numerical Data Types}
Numarray hides the C implementation of its basic array elements behind a set of
C typedefs which specify the absolute size of the type in bits. This approach
enables a programmer to specify data items of arrays and extension functions in
an explicit yet portable manner. In contrast, basic C types are platform
relative, and so less useful for describing real physical data. Here are the
names of the concrete Numarray element types:
\begin{itemize}
\item Bool
\item Int8, UInt8
\item Int16, UInt16
\item Int32, UInt32
\item Int64, UInt64
\item Float32, Float64
\item Complex32, Complex64
\end{itemize}
\subsection{NumarrayType}
The type of a numarray is communicated in C via one of the following
enumeration constants. Type codes which are backwards compatible with Numeric
are defined in terms of these constants, but use these if you're not already
using the Numeric codes. These constants communicate type requirements between
one function and another, since in C, you cannot pass a typedef as a value.
tAny is used to specify both ``no type requirement'' and ``no known type''
depending on context.
\begin{verbatim}
typedef enum
{
tAny,
tBool,
tInt8, tUInt8,
tInt16, tUInt16,
tInt32, tUInt32,
tInt64, tUInt64,
tFloat32, tFloat64,
tComplex32, tComplex64,
tDefault = tFloat64,
#if LP64
tLong = tInt64
#else
tLong = tInt32
#endif
} NumarrayType;
\end{verbatim}
\subsection{PyArray_Descr}
\ctype{PyArray_Descr} is used to hold a few parameters related to the type of
an array and exists mostly for backwards compatability with Numeric.
\var{type_num} is a NumarrayType value. \var{elsize} indicates the number of
bytes in one element of an array of that type. \var{type} is a Numeric
compatible character code.
Numarray's \ctype{PyArray_Descr} is currently missing the type-casting,
\function{ones}, and \function{zeroes} functions. Extensions which use these
missing Numeric features will not yet compile. Arrays of type Object are not
yet supported.
\begin{verbatim}
typedef struct {
int type_num; /* PyArray_TYPES */
int elsize; /* bytes for 1 element */
char type; /* One of "cb1silfdFD " Object arrays not supported. */
} PyArray_Descr;
\end{verbatim}
\subsection{PyArrayObject}
The fundamental data structure of numarray is the PyArrayObject, which is named
and layed out to provide source compatibility with Numeric. It is compatible
with most but not all Numeric code. The constant MAXDIM, the maximum number of
dimensions in an array, is defined as 40. It should be noted that unlike
earlier versions of numarray, the present PyArrayObject structure is a first
class python object, with full support for the number protocols in C.
Well-behaved arrays have mutable fields which will reflect modifications back
into \python ``for free''.
\begin{verbatim}
typedef int maybelong; /* towards 64-bit without breaking extensions. */
typedef struct {
/* Numeric compatible stuff */
PyObject_HEAD
char *data; /* points to the actual C data for the array */
int nd; /* number of array shape elements */
maybelong *dimensions; /* values of shape elements */
maybelong *strides; /* values of stride elements */
PyObject *base; /* unused, but don't touch! */
PyArray_Descr *descr; /* pointer to descriptor for this array's type */
int flags; /* bitmask defining various array properties */
/* numarray extras */
maybelong _dimensions[MAXDIM]; /* values of shape elements */
maybelong _strides[MAXDIM]; /* values of stride elements */
PyObject *_data; /* object must meet buffer API */
PyObject *_shadows; /* ill-behaved original array. */
int nstrides; /* elements in strides array */
long byteoffset; /* offset into buffer where array data begins */
long bytestride; /* basic seperation of elements in bytes */
long itemsize; /* length of 1 element in bytes */
char byteorder; /* NUM_BIG_ENDIAN, NUM_LITTLE_ENDIAN */
char _unused0;
char _unused1;
/* Don't expect the following vars to stay around. Never use them.
They're an implementation detail of the get/set macros. */
Complex64 temp; /* temporary for get/set macros */
char * wptr; /* working pointer for get/set macros */
} PyArrayObject;
\end{verbatim}
\subsection{Flag Bits}
The following are the definitions for the bit values in the \var{flags} field
of each numarray. Low order bits are Numeric compatible, higher order bits
were added by numarray.
\begin{verbatim}
/* Array flags */
#define CONTIGUOUS 1 /* compatible, depends */
#define OWN_DIMENSIONS 2 /* always false */
#define OWN_STRIDES 4 /* always false */
#define OWN_DATA 8 /* always false */
#define SAVESPACE 0x10 /* not used */
#define ALIGNED 0x100 /* roughly: data % itemsize == 0 */
#define NOTSWAPPED 0x200 /* byteorder == sys.byteorder */
#define WRITABLE 0x400 /* data buffer is writable */
#define IS_CARRAY (CONTIGUOUS | ALIGNED | NOTSWAPPED)
\end{verbatim}
\section{Numeric simulation API}
\label{sec:C-API:numeric-simulation}
These notes describe the Numeric compatability functions which enable numarray
to utilize a subset of the extensions written for Numeric (NumPy). Not all
Numeric C-API features and therefore not all Numeric extensions are currently
supported. Users should be able to utilize suitable extensions written for
Numeric within the numarray environment by:
\begin{enumerate}
\item Writing a numarray setup.py file.
\item Scanning the extension C-code for all instances of array creation and
return and making corrections as needed and specified below.
\item Re-compiling the Numeric C-extension for numarray.
\end{enumerate}
Numarray's compatability with Numeric consists of 3 things:
\begin{enumerate}
\item A replacement header file, "arrayobject.h" which supplies simulation
functions and macros for numarray just as the original arrayobject.h
supplies the C-API for Numeric.
\item Layout and naming of the fundamental numarray C-type,
\ctype{PyArrayObject}, in a Numeric source compatible way.
\item A set of "simulation" functions. These functions have the same names and
parameters as the original Numeric functions, but operate on numarrays. The
simulation functions are also incomplete; features not currently supported
should result in compile time warnings.
\end{enumerate}
\subsection{Simulation Functions}
\label{sec:C-API:compat:simulation-functions}
The basic use of numarrays by Numeric extensions is achieved in the extension
function's wrapper code by:
\begin{enumerate}
\item Ensuring creation of array objects by calls to simulation functions.
\item DECREFing each array or calling PyArray_Return.
\end{enumerate}
Unlike prior versions of numarray, this version *does* support access to array
objects straight out of PyArg_ParseTuple. This is a consequence of a change to
the underlying object model, where a class instance has been replaced by
PyArrayObject. Nevertheless, the ``right'' way to access arrays is either via
the high level interface or via emulated Numeric factory functions. That way,
access to other python sequences is supported as well. Using the ``right'' way
for numarray is also more important than for Numeric because numarray arrays
may be byteswapped or misaligned and hence unusable from simple C-code. It
should be noted that the numarray and Numeric are not completely compatible,
and therefore this API does not provide support for string arrays or object
arrays.
The creation of array objects is illustrated by the following of wrapper code
for a 2D convolution function:
\begin{verbatim}
#include "python.h"
#include "arrayobject.h"
static PyObject *
Py_Convolve2d(PyObject *obj, PyObject *args)
{
PyObject *okernel, *odata, *oconvolved=Py_None;
PyArrayObject *kernel, *data, *convolved;
if (!PyArg_ParseTuple(args, "OO|O", &okernel, &odata, &oconvolved)) {
return PyErr_Format(_Error,
"Convove2d: Invalid parameters.");
goto _fail;
}
\end{verbatim}
The first step was simply to get object pointers to the numarray parameters to
the convolution function: okernel, odata, and oconvolved. Oconvolved is an
optional output parameter, specified with a default value of Py_None which is
used when only 2 parameters are supplied at the python level. Each of the
``o'' parameters should be thought of as an arbitrary sequence object, not
necessarily an array.
The next step is to call simulation functions which convert sequence objects
into PyArrayObjects. In a Numeric extension, these calls map tuples and lists
onto Numeric arrays and assert their dimensionality as 2D. The Numeric
simulation functions first map tuples, lists, and misbehaved numarrays onto
well-behaved numarrays. Calls to these functions transparently use the
numarray high level interface and provide visibility only to aligned and
non-byteswapped array objects.
\begin{verbatim}
kernel = (PyArrayObject *) PyArray_ContiguousFromObject(
okernel, PyArray_DOUBLE, 2, 2);
data = (PyArrayObject *) PyArray_ContiguousFromObject(
odata, PyArray_DOUBLE, 2, 2);
if (!kernel || !data) goto _fail;
\end{verbatim}
Extra processing is required to handle the output array \var{convolved},
cloning it from \var{data} if it was not specified. Code should be supplied,
but is not, to verify that convolved and data have the same shape.
\begin{verbatim}
if (convolved == Py_None)
convolved = (PyArrayObject *) PyArray_FromDims(
data->nd, data->dimensions, PyArray_DOUBLE);
else
convolved = (PyArrayObject *) PyArray_ContiguousFromObject(
oconvolved, PyArray_DOUBLE, 2, 2);
if (!convolved) goto _fail;
\end{verbatim}
After converting all of the input paramters into \ctype{PyArrayObject}s, the
actual convolution is performed by a seperate function. This could just as
well be done inline:
\begin{verbatim}
Convolve2d(kernel, data, convolved);
\end{verbatim}
After processing the arrays, they should be DECREF'ed or returned using
\cfunction{PyArray_Return}. It is generally not possible to directly return a
numarray object using \cfunction{Py_BuildValue} because the shadowing of
mis-behaved arrays needs to be undone. Calling \cfunction{PyArray_Return}
destroys any temporary and passes the numarray back to \python.
\begin{verbatim}
Py_DECREF(kernel);
Py_DECREF(data);
if (convolved != Py_None) {
Py_DECREF(convolved);
Py_INCREF(Py_None);
return Py_None;
} else
return PyArray_Return(convolved);
_fail:
Py_XDECREF(kernel);
Py_XDECREF(data);
Py_XDECREF(convolved);
return NULL;
}
\end{verbatim}
Byteswapped or misaligned arrays are handled by a process of shadowing which
works like this:
\begin{enumerate}
\item When a "misbehaved" numarray is accessed via the Numeric simulation
functions, first a well-behaved temporary copy (shadow) is created by
NA_IoArray.
\item Operations performed by the extension function modifiy the data buffer
belonging to the shadow.
\item On extension function exit, the shadow array is copied back onto the
original and the shadow is freed.
\end{enumerate}
All of this is transparent to the user; if the original array is well-behaved,
it works much like it always did; if not, what would have failed altogether
works at the cost of extra temporary storage. Users which cannot afford the
cost of shadowing need to use numarray's native elementwise or 1D APIs.
\subsection{Numeric Compatible Functions}
\label{sec:C-API:compat:implemented-functions}
The following functions are currently implemented:
\begin{cfuncdesc}{PyObject*}{PyArray_FromDims}{int nd, int *dims, int type}
This function will allocate a new numarray.
An array created with PyArray_FromDims can be used as a temporary or
returned using PyArray_Return.
Used as a temporary, calling Py_DECREF deallocates it.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyArray_FromDimsAndData}{int nd, int *dims, int type, char *data}
This function will allocate a numarray of the specified shape and type
which will refer to the data buffer specified by \var{data}. The contents
of \var{data} will not be copied nor will \var{data} be deallocated upon
the deletion of the array.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyArray_ContiguousFromObject}{%
PyObject *op, int type, int min_dim, int max_dim}% Returns an simulation
object for a contiguous numarray of 'type' created from the sequence object
'op'. If 'op' is a contiguous, aligned, non-byteswapped numarray, then the
simulation object refers to it directly. Otherwise a well-behaved numarray
will be created from 'op' and the simulation object will refer to it.
min_dim and max_dim bound the expected rank as in Numeric.
\code{min_dim==max_dim} specifies an exact rank. \code{min_dim==max_dim==0}
specifies \emph{any} rank.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyArray_CopyFromObject}{%
PyObject *op, int type, int min_dim, int max_dim}% Returns a contiguous
array, similar to PyArray_FromContiguousObject, but always returning an
simulation object referring to a new numarray copied from the original
sequence.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyArray_FromObject}{%
PyObject *op, int type, int min_dim, int max_dim}%
Returns and simulation object based on 'op', possibly discontiguous. The
strides array must be used to access elements of the simulation object.
If 'op' is a byteswapped or misaligned numarray, FromObject creates a
temporary copy and the simulation object refers to it.
If 'op' is a nonswapped, aligned numarray, the simulation object refers to
it.
If 'op' is some other sequence, it is converted to a numarray and the
simulation object refers to that.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyArray_Return}{PyArrayObject *apr}
Returns simulation object 'apr' to python. The simulation object itself is
destructed. The numarray it refers to (base) is returned as the result of
the function.
An additional check is (or eventually will be) performed to guarantee that
rank-0 arrays are converted to appropriate python scalars.
PyArray_Return has no net effect on the reference count of the underlying
numarray.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyArray_As1D}{PyObject **op, char **ptr, int *d1, int typecode}
Copied from Numeric verbatim.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyArray_As2D}{PyObject **op, char ***ptr, int *d1, int *d2, int typecode}
Copied from Numeric verbatim.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyArray_Free}{PyObject *op, char *ptr}
Copied from Numeric verbatim. \note{This means including bugs and all!}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyArray_Check}{PyObject *op}
This function returns 1 if op is a PyArrayObject.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyArray_Size}{PyObject *op}
This function returns the total element count of the array.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyArray_NBYTES}{PyArrayObject *op}
This function returns the total size in bytes of the array, and assumes that
bytestride == itemsize, so that the size is product(shape)*itemsize.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyArray_Copy}{PyArrayObject *op}
This function returns a copy of the array 'op'. The copy returned is
guaranteed to be well behaved, i.e. neither byteswapped nor misaligned.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyArray_CanCastSafely}{PyArrayObject *op, int type}
This function returns 1 IFF the array 'op' can be safely cast to 'type',
otherwise it returns 0.
\end{cfuncdesc}
\begin{cfuncdesc}{PyArrayObject*}{PyArray_Cast}{PyArrayObject *op, int type}
This function casts the array 'op' into an equivalent array of type 'type'.
\end{cfuncdesc}
\begin{cfuncdesc}{PyArray_Descr*}{PyArray_DescrFromType}{int type}
This function returns a pointer to the array descriptor for 'type'. The
numarray version of PyArray_Descr is incomplete and does not support casting,
getitem, setitem, one, or zero.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyArray_isArray(PyObject *o)}
This macro is designed to fail safe and return 0 when numarray is not
installed at all. When numarray is installed, it returns 1 iff object 'o' is
a numarray, and 0 otherwise. This macro facilitates the optional use of
numarray within an extension.
\end{cfuncdesc}
\subsection{Unsupported Numeric Features}
\label{sec:C-API:compat:unsupported}
\begin{itemize}
\item PyArrayError
\item PyArray_ObjectType()
\item PyArray_Reshape()
\item PyArray_SetStringFunction()
\item PyArray_SetNumericOps()
\item PyArray_Take()
\item UFunc API
\end{itemize}
\section{High-level API}
\label{sec:C-API:high-level-api}
The high-level native API accepts an object (which may or may not be an array)
and transforms the object into an array which satisfies a set of ``behaved-ness
requirements''. The idea behind the high-level API is to transparently convert
misbehaved numarrays, ordinary sequences, and python scalars into C-arrays. A
``misbehaved array'' is one which is byteswapped, misaligned, or discontiguous.
This API is the simplest and fastest, provided that your arrays are small. If
you find your program is exhausting all available memory, it may be time to
look at one of the other APIs.
\subsection{High-level functions}
\label{sec:C-API:high-level-functions}
The high-level support functions for interchanging \class{numarray}s between
\python{} and C are as follows:
\begin{cfuncdesc}{PyArrayObject*}{NA_InputArray}{%
PyObject *seq, NumarrayType t, int requires}
The purpose of NA_InputArray is to transfer array data from \python to C.
\end{cfuncdesc}
\begin{cfuncdesc}{PyArrayObject*}{NA_OutputArray}{%
PyObject *seq, NumarrayType t, int requires} The purpose of
NA_OutputArray is to transfer data from C to \python. The output array must be
a PyArrayObject, i.e. it cannot be an arbitrary Python sequence.
\end{cfuncdesc}
\begin{cfuncdesc}{PyArrayObject*}{NA_IoArray}{%
PyObject *seq, NumarrayType t, int requires} NA_IoArray has fully
bidirectional data transfer, creating the illusion of call-by-reference.
\end{cfuncdesc}
For a well-behaved writable array, there is no difference between the three,
as no temporary is created and the returned object is identical to the
original object (with an additional reference). For a mis-behaved input
array, a well-behaved temporary will be created and the data copied from the
original to the temporary. Since it is an input, modifications to its
contents are not guaranteed to be reflected back to \python, and in the case
where a temporary was created, won't be. For a mis-behaved output array, any
data side-effects generated by the C code will be safely communicated back to
\python, but the initial array contents are undefined. For an I/O array, any
required temporary will be initialized to the same contents as the original
array, and any side-effects caused by C-code will be copied back to the
original array. The array factory routines of the Numeric compatability API
are written in terms of NA_IoArray.
The return value of each function (\cfunction{NA_InputArray},
\cfunction{NA_OutputArray}, or \cfunction{NA_IoArray}) is either a reference
to the original array object, or a reference to a temporary array.
Following execution of the C-code in the extension function body this
pointer should \emph{always} be DECREFed. When a temporary is DECREFed, it
is deallocated, possibly after copying itself onto the original array. The
one exception to this rule is that you should not DECREF an array returned
via the NA_ReturnOutput function.
The \var{seq} parameter specifies the original numeric sequence to be
interfaced. Nested lists and tuples of numbers can be converted by
\cfunction{NA_InputArray} and \cfunction{NA_IoArray} into a temporary array.
The temporary is lost on function exit. Strictly speaking, allowing
NA_IoArray to accept a list or tuple is a wart, since it will lose any side
effects. In principle, communication back to lists and tuples can be
supported but is not currently.
The \var{t} parameter is an enumeration value which defines the type the
array data should be converted to. Arrays of the same type are passed
through unaltered, while mis-matched arrays are cast into temporaries of the
specified type. The value \constant{tAny} may be specified to indicate that
the extension function can handle any type correctly so no temporary should
is required.
The \var{requires} integer indicates under what conditions, other than type
mismatch, a temporary should be made. The simple way to specify it is to
use \constant{NUM_C_ARRAY}. This will cause the API function to make a
well-behaved temporary if the original is byteswapped, misaligned, or
discontiguous.
There is one other pair of high level function which serves to return output
arrays as the function value: NA_OptionalOutputArray and NA_ReturnOutput.
\begin{cfuncdesc}{PyArrayObject*}{NA_OptionalOutputArray}{%
PyObject *seq, NumarrayType t, int requires, PyObject *master}%
\cfunction{NA_OptionalOutputArray} is essentially
\cfunction{NA_OutputArray}, but with one twist: if the original array
\var{seq} has the value \constant{NULL} or \constant{Py_None}, a copy of
\var{master} is returned. This facilitates writing functions where the
output array may or may-not be specified by the \python{} user.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{NA_ReturnOutput}{PyObject *seq, PyObject *shadow}
\cfunction{NA_ReturnOutput} accepts as parameters both the original
\var{seq} and the value returned from
\cfunction{NA_OptionalOutputArray}, \var{shadow}. If \var{seq} is
\constant{Py_None} or \constant{NULL}, then \var{shadow} is returned.
Otherwise, an output array was specified by the user, and \constant{Py_None}
is returned. This facilitates writing functions in the numarray style
where the specification of an output array renders the function ``mute'',
with all side-effects in the output array and None as the return value.
\end{cfuncdesc}
\subsection{Behaved-ness Requirements}
Calls to the high level API specify a set of requirements that incoming arrays
must satisfy. The requirements set is specified by a bit mask which is or'ed
together from bits representing individual array requirements. An ordinary C
array satisfies all 3 requirements: it is contiguous, aligned, and not
byteswapped. It is possible to request arrays satisfying any or none of the
behavedness requirements. Arrays which do not satisfy the specified
requirements are transparently ``shadowed'' by temporary arrays which do
satisfy them. By specifying \constant{NUM_UNCONVERTED}, a caller is certifying
that his extension function can correctly and directly handle the special cases
possible for a \class{NumArray}, excluding type differences.
\begin{verbatim}
typedef enum
{
NUM_CONTIGUOUS=1,
NUM_NOTSWAPPED=2,
NUM_ALIGNED=4,
NUM_WRITABLE=8,
NUM_COPY=16,
NUM_C_ARRAY = (NUM_CONTIGUOUS | NUM_ALIGNED | NUM_NOTSWAPPED),
NUM_UNCONVERTED = 0
}
\end{verbatim}
\function{NA_InputArray} will return a guaranteed writable result if
\constant{NUM_WRITABLE} is specified. A writable temporary will be made for
arrays which have readonly buffers. Any changes made to a writable input array
\emph{may} be lost at extension exit time depending on whether or not a
temporary was required. \function{NA_InputArray} will also return a guaranteed
writable result by specifying \constant{NUM_COPY}; with \constant{NUM_COPY}, a
temporary is \emph{always} made and changes to it are \emph{always} lost at
extension exit time.
Omitting \constant{NUM_WRITABLE} and \constant{NUM_COPY} from the
\var{requires} of \function{NA_InputArray} asserts that you will not modify the
array buffer in your C code. Readonly arrays (e.g. from a readonly memory map)
which you attempt to modify can result in a segfault if \constant{NUM_WRITABLE}
or \constant{NUM_COPY} was not specified.
Arrays passed to \function{NA_IoArray} and \function{NA_OutputArray} must be
writable or they will raise an exception; specifing \constant{NUM_WRITABLE} or
\constant{NUM_COPY} to these functions has no effect.
\subsection{Example}
\label{sec:C-API:high-level:example}
A C wrapper function using the high-level API would typically look like the
following.\footnote{This function is taken from the convolve example in the
source distribution.}
\begin{verbatim}
#include "Python.h"
#include "libnumarray.h"
static PyObject *
Py_Convolve1d(PyObject *obj, PyObject *args)
{
PyObject *okernel, *odata, *oconvolved=Py_None;
PyArrayObject *kernel, *data, *convolved;
if (!PyArg_ParseTuple(args, "OO|O", &okernel, &odata, &oconvolved)) {
PyErr_Format(_convolveError,
"Convolve1d: Invalid parameters.");
goto _fail;
}
\end{verbatim}
First, define local variables and parse parameters. \cfunction{Py_Convolve1d}
expects two or three array parameters in \var{args}: the convolution kernel,
the data, and optionally the return array. We define two variables for each
array parameter, one which represents an arbitrary sequence object, and one
which represents a PyArrayObject which contains a conversion of the sequence.
If the sequence object was already a well-behaved numarray, it is returned
without making a copy.
\begin{verbatim}
/* Align, Byteswap, Contiguous, Typeconvert */
kernel = NA_InputArray(okernel, tFloat64, NUM_C_ARRAY);
data = NA_InputArray(odata, tFloat64, NUM_C_ARRAY);
convolved = NA_OptionalOutputArray(oconvolved, tFloat64, NUM_C_ARRAY, data);
if (!kernel || !data || !convolved) {
PyErr_Format( _convolveError,
"Convolve1d: error converting array inputs.");
goto _fail;
}
\end{verbatim}
These calls to NA_InputArray and OptionalOutputArray require that the arrays be
aligned, contiguous, and not byteswapped, and of type Float64, or a temporary
will be created. If the user hasn't provided a output array we ask
\cfunction{NA_OptionalOutputArray} to create a copy of the input \var{data}.
We also check that the array screening and conversion process succeeded by
verifying that none of the array pointers is NULL.
\begin{verbatim}
if ((kernel->nd != 1) || (data->nd != 1)) {
PyErr_Format(_convolveError,
"Convolve1d: arrays must have 1 dimension.");
goto _fail;
}
if (!NA_ShapeEqual(data, convolved)) {
PyErr_Format(_convolveError,
"Convolve1d: data and output arrays need identitcal shapes.");
goto _fail;
}
\end{verbatim}
Make sure we were passed one-dimensional arrays, and data and output have the
same size.
\begin{verbatim}
Convolve1d(kernel->dimensions[0], NA_OFFSETDATA(kernel),
data->dimensions[0], NA_OFFSETDATA(data),
NA_OFFSETDATA(convolved));
\end{verbatim}
Call the C function actually performing the work. NA_OFFSETDATA returns the
pointer to the first element of the array, adjusting for any byteoffset.
\begin{verbatim}
Py_XDECREF(kernel);
Py_XDECREF(data);
\end{verbatim}
Decrease the reference counters of the input arrays. These were increased by
\cfunction{NA_InputArray}. Py_XDECREF tolerates NULL. DECREF'ing the
PyArrayObject is how temporaries are released and in the case of
IO and Output arrays, copied back onto the original.
\begin{verbatim}
/* Align, Byteswap, Contiguous, Typeconvert */
return NA_ReturnOutput(oconvolved, convolved);
_fail:
Py_XDECREF(kernel);
Py_XDECREF(data);
Py_XDECREF(convolved);
return NULL;
}
\end{verbatim}
Now return the results, which are either stored in the user-supplied array
\var{oconvolved} and \constant{Py_None} is returned, or if the user didn't
supply an output array the temporary \var{convolved} is returned.
If your C function creates the output array you can use the following sequence
to pass this array back to \python{}:
\begin{verbatim}
double *result;
int m, n;
.
.
.
result = func(...);
if(NULL == result)
return NULL;
return NA_NewArray((void *)result, tFloat64, 2, m, n);
}
\end{verbatim}
The C function \cfunction{func} returns a newly allocated (m, n) array in
\var{result}. After we check that everything is ok, we create a new numarray
using \cfunction{NA_NewArray} and pass it back to \python. \cfunction{NA_NewArray}
creates a \class{numarray} with \constant{NUM_C_ARRAY} properties. If you wish to
create an array that is byte-swapped, or misaligned, you can use
\cfunction{NA_NewAll}.
The C-code of the core convolution function is uninteresting. The main point
of the example is that when using the high-level API, numarray specific code is
confined to the wrapper function. The interface for the core function can be
written in terms of primitive numarray/C data items, not objects. This is
possible because the high level API can be used to deliver C arrays.
\begin{verbatim}
static void Convolve1d(long ksizex, Float64 *kernel,
long dsizex, Float64*data, Float64 *convolved)
{
long xc; long halfk = ksizex/2;
for(xc=0; xc<halfk; xc++)
convolved[xc] = data[xc];
for(xc=halfk; xc<dsizex-halfk; xc++) {
long xk;
double temp = 0;
for (xk=0; xk<ksizex; xk++)
temp += kernel[xk]*data[xc-halfk+xk];
convolved[xc] = temp;
}
for(xc=dsizex-halfk; xc<dsizex; xc++)
convolved[xc] = data[xc];
}
\end{verbatim}
\section{Element-wise API}
\label{sec:C-API:element-wise-api}
The element-wise in-place API is a family of macros and functions designed to
get and set elements of arrays which might be byteswapped, misaligned,
discontiguous, or of a different type. You can obtain \class{PyArrayObject}s
for these misbehaved arrays from the high-level API by specifying fewer
requirements (perhaps just 0, rather than NUM_C_ARRAY). In this way, you can
avoid the creation of temporaries at a cost of accessing your array with these
macros and functions and a significant performance penalty. Make no mistake,
if you have the memory, the high level API is the fastest. The whole point of
this API is to support cases where the creation of temporaries exhausts either
the physical or virtual address space. Exhausting physical memory will result
in thrashing, while exhausting the virtual address space will result in program
exception and failure. This API supports avoiding the creation of the
temporaries, and thus avoids exhausting physical and virual memory, possibly
improving net performance or even enabling program success where simpler
methods would just fail.
\subsection{Element-wise functions}
\label{sec:C-API:element-wise:functions}
The single element macros each access one element of an array at a time, and
specify the array type in two places: as part of the PyArrayObject type
descriptor, and as ``type''. The former defines what the array is, and the
latter is required to produce correct code from the macro. They should
\emph{match}. When you pass ``type'' into one of these macros, you are
defining the kind of array the code can operate on. It is an error to pass a
non-matching array to one of these macros. One last piece of advice: call
these macros carefully, because the resulting expansions and error messages are
a *obscene*. Note: the type parameter for a macro is one of the Numarray
Numeric Data Types, not a NumarrayType enumeration value.
\subsubsection{Pointer based single element macros}
\label{sec:C-API:pointer-based-single}
\begin{cfuncdesc}{}{NA_GETPa}{PyArrayObject*, type, char*}
aligning
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GETPb}{PyArrayObject*, type, char*}
byteswapping
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GETPf}{PyArrayObject*, type, char*}
fast (well-behaved)
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GETP}{PyArrayObject*, type, char*}
testing: any of above
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SETPa}{PyArrayObject*, type, char*, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SETPb}{PyArrayObject*, type, char*, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SETPf}{PyArrayObject*, type, char*, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SETP}{PyArrayObject*, type, char*, v}
\end{cfuncdesc}
\subsubsection{One index single element macros}
\begin{cfuncdesc}{}{NA_GET1a}{PyArrayObject*, type, i}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GET1b}{PyArrayObject*, type, i}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GET1f}{PyArrayObject*, type, i}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GET1}{PyArrayObject*, type, i}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET1a}{PyArrayObject*, type, i, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET1b}{PyArrayObject*, type, i, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET1f}{PyArrayObject*, type, i, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET1}{PyArrayObject*, type, i, v}
\end{cfuncdesc}
\subsubsection{Two index single element macros}
\begin{cfuncdesc}{}{NA_GET2a}{PyArrayObject*, type, i, j}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GET2b}{PyArrayObject*, type, i, j}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GET2f}{PyArrayObject*, type, i, j}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_GET2}{PyArrayObject*, type, i, j}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET2a}{PyArrayObject*, type, i, j, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET2b}{PyArrayObject*, type, i, j, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET2f}{PyArrayObject*, type, i, j, v}
\end{cfuncdesc}
\begin{cfuncdesc}{}{NA_SET2}{PyArrayObject*, type, i, j, v}
\end{cfuncdesc}
\subsubsection{One and Two Index, Offset, Float64/Complex64/Int64 functions}
The \class{Int64}/\class{Float64}/\class{Complex64} functions require a
function call to access a single element of an array, making them slower than
the single element macros. They have two advantages:
\begin{enumerate}
\item They're function calls, so they're a little more robust.
\item They can handle \emph{any} input array type and behavior properties.
\end{enumerate}
While these functions have no error return status, they *can* alter the Python
error state, so well written extensions should call
\cfunction{PyErr_Occurred()} to determine if an error occurred and report it.
It's reasonable to do this check once at the end of an extension function,
rather than on a per-element basis.
\begin{cfuncdesc}{}{void NA_get_offset}{PyArrayObject *, int N, ...}
\cfunction{NA_get_offset} computes the offset into an array object given a
variable number of indices. It is not especially robust, and it is
considered an error to pass it more indices than the array has, or indices
which are negative or out of range.
\end{cfuncdesc}
\begin{cfuncdesc}{Float64}{NA_get_Float64}{PyArrayObject *, long offset}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set_Float64}{PyArrayObject *, long offset, Float64 v}
\end{cfuncdesc}
\begin{cfuncdesc}{Float64}{NA_get1_Float64}{PyArrayObject *, int i}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set1_Float64}{PyArrayObject *, int i, Float64 v}
\end{cfuncdesc}
\begin{cfuncdesc}{Float64}{NA_get2_Float64}{PyArrayObject *, int i, int j}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set2_Float64}{PyArrayObject *, int i, int j, Float64 v}
\end{cfuncdesc}
\begin{cfuncdesc}{Int64}{NA_get_Int64}{PyArrayObject *, long offset}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set_Int64}{PyArrayObject *, long offset, Int64 v}
\end{cfuncdesc}
\begin{cfuncdesc}{Int64}{NA_get1_Int64}{PyArrayObject *, int i}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set1_Int64}{PyArrayObject *, int i, Int64 v}
\end{cfuncdesc}
\begin{cfuncdesc}{Int64}{NA_get2_Int64}{PyArrayObject *, int i, int j}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set2_Int64}{PyArrayObject *, int i, int j, Int64 v}
\end{cfuncdesc}
\begin{cfuncdesc}{Complex64}{NA_get_Complex64}{PyArrayObject *, long offset}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set_Complex64}{PyArrayObject *, long offset, Complex64 v}
\end{cfuncdesc}
\begin{cfuncdesc}{Complex64}{NA_get1_Complex64}{PyArrayObject *, int i}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set1_Complex64}{PyArrayObject *, int i, Complex64 v}
\end{cfuncdesc}
\begin{cfuncdesc}{Complex64}{NA_get2_Complex64}{PyArrayObject *, int i, int j}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{NA_set2_Complex64}{PyArrayObject *, int i, int j, Complex64 v}
\end{cfuncdesc}
\subsection{Example}
\label{sec:C-API:element-wise:example}
The \cfunction{convolve1D} wrapper function corresponding to section
\ref{sec:C-API:high-level:example} using the element-wise API could look
like:\footnote{This function is also available as an example in the source
distribution.}
\begin{verbatim}
static PyObject *
Py_Convolve1d(PyObject *obj, PyObject *args)
{
PyObject *okernel, *odata, *oconvolved=Py_None;
PyArrayObject *kernel, *data, *convolved;
if (!PyArg_ParseTuple(args, "OO|O", &okernel, &odata, &oconvolved)) {
PyErr_Format(_Error, "Convolve1d: Invalid parameters.");
goto _fail;
}
kernel = NA_InputArray(okernel, tAny, 0);
data = NA_InputArray(odata, tAny, 0);
\end{verbatim}
For the kernel and data arrays, \class{numarray}s of any type are accepted
without conversion. Thus there is no copy of the data made except for lists or
tuples. All types, byteswapping, misalignment, and discontiguity must be
handled by Convolve1d. This can be done easily using the get/set functions.
Macros, while faster than the functions, can only handle a single type.
\begin{verbatim}
convolved = NA_OptionalOutputArray(oconvolved, tFloat64, 0, data);
\end{verbatim}
Also for the output array we accept any variety of type tFloat without
conversion. No copy is made except for non-tFloat. Non-numarray sequences are
not permitted as output arrays. Byteswaping, misaligment, and discontiguity
must be handled by Convolve1d. If the \python caller did not specify the
oconvolved array, it initially retains the value Py_None. In that case,
\var{convolved} is cloned from the array \var{data} using the specified type.
It is important to clone from \var{data} and not \var{odata}, since the latter
may be an ordinary \python sequence which was converted into numarray
\var{data}.
\begin{verbatim}
if (!kernel || !data || !convolved)
goto _fail;
if ((kernel->nd != 1) || (data->nd != 1)) {
PyErr_Format(_Error,
"Convolve1d: arrays must have exactly 1 dimension.");
goto _fail;
}
if (!NA_ShapeEqual(data, convolved)) {
PyErr_Format(_Error,
"Convolve1d: data and output arrays must have identical length.");
goto _fail;
}
if (!NA_ShapeLessThan(kernel, data)) {
PyErr_Format(_Error,
"Convolve1d: kernel must be smaller than data in both dimensions");
goto _fail;
}
if (Convolve1d(kernel, data, convolved) < 0) /* Error? */
goto _fail;
else {
Py_XDECREF(kernel);
Py_XDECREF(data);
return NA_ReturnOutput(oconvolved, convolved);
}
_fail:
Py_XDECREF(kernel);
Py_XDECREF(data);
Py_XDECREF(convolved);
return NULL;
}
\end{verbatim}
This function is very similar to the high-level API wrapper, the notable
difference is that we ask for the unconverted arrays \var{kernel} and
\var{data} and \var{convolved}. This requires some attention in their usage.
The function that does the actual convolution in the example has to use
\cfunction{NA_get*} to read and \cfunction{NA_set*} to set an element of these
arrays, instead of using straight array notation. These functions perform any
necessary type conversion, byteswapping, and alignment.
\begin{verbatim}
static int
Convolve1d(PyArrayObject *kernel, PyArrayObject *data, PyArrayObject *convolved)
{
int xc, xk;
int ksizex = kernel->dimensions[0];
int halfk = ksizex / 2;
int dsizex = data->dimensions[0];
for(xc=0; xc<halfk; xc++)
NA_set1_Float64(convolved, xc, NA_get1_Float64(data, xc));
for(xc=dsizex-halfk; xc<dsizex; xc++)
NA_set1_Float64(convolved, xc, NA_get1_Float64(data, xc));
for(xc=halfk; xc<dsizex-halfk; xc++) {
Float64 temp = 0;
for (xk=0; xk<ksizex; xk++) {
int i = xc - halfk + xk;
temp += NA_get1_Float64(kernel, xk) *
NA_get1_Float64(data, i);
}
NA_set1_Float64(convolved, xc, temp);
}
if (PyErr_Occurred())
return -1;
else
return 0;
}
\end{verbatim}
\section{One-dimensional API}
\label{sec:C-API:One-dimensional-api}
The 1D in-place API is a set of functions for getting/setting elements from the
innermost dimension of an array. These functions improve speed by moving type
switches, ``behavior tests'', and function calls out of the per-element loop.
The functions get/set a series of consequtive array elements to/from arrays of
\class{Int64}, \class{Float64}, or \class{Complex64}. These functions are
(even) more intrusive than the single element functions, but have better
performance in many cases. They can operate on arrays of any type, with the
exception of the Complex64 functions, which only handle Complex64. The
functions return 0 on success and -1 on failure, with the Python error state
already set. To be used profitably, the 1D API requires either a large single
dimension which can be processeed in blocks or a multi-dimensional array such
as an image. In the latter case, the 1D API is suitable for processing one (or
more) scanlines at a time rather than the entire image at once. See the source
distribution Examples/convolve/one_dimensionalmodule.c for an example of usage.
\begin{cfuncdesc}{long}{NA_get_offset}{PyArrayObject *, int N, ...}
This function applies a (variable length) set of \var{N} indices to an array
and returns a byte offset into the array.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_get1D_Int64}{%
PyArrayObject *, long offset, int cnt, Int64 *out}%
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_set1D_Int64}{%
PyArrayObject *, long offset, int cnt, Int64 *in}%
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_get1D_Float64}{%
PyArrayObject *, long offset, int cnt, Float64 *out}%
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_set1D_Float64}{%
PyArrayObject *, long offset, int cnt, Float64 *in}%
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_get1D_Complex64}{%
PyArrayObject *, long offset, int cnt, Complex64 *out}%
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_set1D_Complex64}{%
PyArrayObject *, long offset, int cnt, Complex64 *in}%
\end{cfuncdesc}
\section{New numarray functions}
\label{sec:C-API:new-numarray-functions}
The following array creation functions share similar behavior. All but one
create a new \class{numarray} using the data specified by \var{data}. If
\var{data} is NULL, the routine allocates a buffer internally based on the
array shape and type; internally allocated buffers have undefined contents.
The data type of the created array is specified by \var{type}.
There are several functions to create \class{numarray}s at the C level:
\begin{cfuncdesc}{static PyArrayObject*}{NA_NewArray}{%
void *data, NumarrayType type, int ndim, ...}%
\var{ndim} specifies the rank of the array (number of dimensions), and the
length of each dimension must be given as the remaining (variable length)
list of \emph{int} parameters. The following example allocates a 100x100
uninitialized array of Int32.
\begin{verbatim}
if (!(array = NA_NewArray(NULL, tInt32, 2, 100, 100)))
return NULL;
\end{verbatim}
\end{cfuncdesc}
\begin{cfuncdesc}{static PyObject*}{NA_vNewArray}{%
void *data, NumarrayType type, int ndim, maybelong *shape}%
For \function{NA_vNewArray} the length of each dimension must be given in an
array of \var{maybelong} pointed to by \var{shape}. The following code
allocates a 2x2 array initialized to a copy of the specified \var{data}.
\begin{verbatim}
Int32 data[4] = { 1, 2, 3, 4 };
maybelong shape[2] = { 2, 2 };
if (!(array = NA_vNewArray(data, tInt32, 2, shape)))
return NULL;
\end{verbatim}
\end{cfuncdesc}
\begin{cfuncdesc}{static PyArrayObject*}{NA_NewAll}{%
int ndim, maybelong *shape, NumarrayType type, void *data, maybelong
byteoffset, maybelong bytestride, int byteorder, int aligned, int
writable}%
\function{NA_NewAll} is similar to \function{NA_vNewArray} except it
provides for the specification of additional parameters. \var{byteoffset}
specifies the byte offset from the base of the data array at which the
\var{real} data begins. \var{bytestride} specifies the miminum stride to
use, the seperation in bytes between adjacent elements in the
array. \var{byteorder} takes one of the values \constant{NUM_BIG_ENDIAN} or
\constant{NUM_LITTLE_ENDIAN}. \var{writable} defines whether the buffer
object associated with the resulting array is readonly or writable.
\end{cfuncdesc}
\begin{cfuncdesc}{static PyArrayObject*}{NA_NewAllStrides}{%
int ndim, maybelong *shape, maybelong *strides, NumarrayType type, void
*data, maybelong byteoffset, maybelong byteorder, int aligned, int
writable}%
\function{NA_NewAllStrides} is a variant of \function{NA_vNewAll} which
also permits the specification of the array strides. The strides are not
checked for correctness.
\end{cfuncdesc}
\begin{cfuncdesc}{static PyArrayObject*}{NA_NewAllFromBuffer}{%
int ndim, maybelong *shape, NumarrayType type, PyObject *buffer, maybelong
byteoffset, maybelong bytestride, int byteorder, int aligned, int
writable}%
\function{NA_NewAllFromBuffer} is similar to \function{NA_NewAll} except it
accepts a buffer object rather than a pointer to C data. The \var{buffer}
object must support the buffer protocol. If \var{buffer} is non-NULL, the
returned array object stores a reference to \var{buffer} and locates its
data there. If \var{buffer} is specified as NULL, a buffer object and
associated data space are allocated internally and the returned array object
refers to that. It is possible to create a Python buffer object from an
array of C data and then construct a \class{numarray} using this function
which refers to the C data without making a copy.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_ShapeEqual}{PyArrayObject*a,PyArrayObject*b}
This function compares the shapes of two arrays, and returns 1 if they
are the same, 0 otherwise.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_ShapeLessThan}{PyArrayObject*a,PyArrayObject*b}
This function compares the shapes of two arrays, and returns 1 if each
dimension of 'a' is less than the corresponding dimension of 'b', 0 otherwise.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_ByteOrder}{}
This function returns the system byte order, either NUM_LITTLE_ENDIAN or
NUM_BIG_ENDIAN.
\end{cfuncdesc}
\begin{cfuncdesc}{Bool}{NA_IeeeMask32}{Float32 value, Int32 mask}
This function returns 1 IFF Float32 \var{value} matches any of the IEEE special
value criteria specified by \var{mask}. See ieeespecial.h for the mask bit
values which can be or'ed together to specify mask.
\function{NA_IeeeSpecial32} has been deprecated and will eventually be removed.
\end{cfuncdesc}
\begin{cfuncdesc}{Bool}{NA_IeeeMask64}{Float64 value,Int32 mask}
This function returns 1 IFF Float64 \var{value} matches any of the IEEE special
value criteria specified by \var{mask}. See ieeespecial.h for the mask bit
values which can be or'ed together to specify mask.
\function{NA_IeeeSpecial64} has been deprecated and will eventually be removed.
\end{cfuncdesc}
\begin{cfuncdesc}{PyArrayObject *}{NA_updateDataPtr}{PyArrayObject *}
This function updates the values derived from the ``_data'' buffer, namely the
data pointer and buffer WRITABLE flag bit. This needs to be called upon
entering or re-entering C-code from Python, since it is possible for buffer
objects to move their data buffers as a result of executing arbitrary Python
and hence arbitrary C-code. The high level interface routines,
e.g. \function{NA_InputArray}, call this routine automatically.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{NA_typeNoToName}{int}
NA_typeNoToName translates a NumarrayType into a character string which can be
used to display it: e.g. tInt32 converts to the string ``Int32''
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{NA_typeNoToTypeObject}{int}
This function converts a NumarrayType C type code into the NumericType object
which implements and represents it more fully. tInt32 converts to the type
object numarray.Int32.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_typeObjectToTypeNo}{PyObject*}
This function converts a numarray type object (e.g. numarray.Int32) into the
corresponding NumarrayType (e.g. tInt32) C type code.
\end{cfuncdesc}
\begin{cfuncdesc} {PyObject*}{NA_intTupleFromMaybeLongs}{int,maybelong*}
This function creates a tuple of Python ints from an array of C maybelong integers.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{NA_maybeLongsFromIntTuple}{int,maybelong*,PyObject*}
This function fills an array of C long integers with the converted values from
a tuple of Python ints. It returns the number of conversions, or -1 for error.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{NA_isIntegerSequence}{PyObject*}
This function returns 1 iff the single parameter is a sequence of Python
integers, and 0 otherwise.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{NA_setArrayFromSequence}{PyArrayObject*,PyObject*}
This function copies the elementwise from a sequence object to a numarray.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_maxType}{PyObject*}
This function returns an integer code corresponding to the highest kind of
Python numeric object in a sequence. INT(0) LONG(1) FLOAT(2) COMPLEX(3).
On error -1 is returned.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{NA_getPythonScalar}{PyArrayObject *a, long offset}
This function returns the Python object corresponding to the single element of
the array 'a' at the given byte offset.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_setFromPythonScalar}{PyArrayObject *a, long offset, PyObject*value}
This function sets the single element of the array 'a' at the given byte
offset to 'value'.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_NDArrayCheck}{PyObject*o}
This function returns 1 iff the 'o' is an instance of NDArray or an instance of
a subclass of NDArray, and 0 otherwise.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_NumArrayCheck}{PyObject*}
This function returns 1 iff the 'o' is an instance of NumArray or an instance of
a subclass of NumArray, and 0 otherwise.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_ComplexArrayCheck}{PyObject*}
This function returns 1 iff the 'o' is an instance of ComplexArray or an instance of
a subclass of ComplexArray, and 0 otherwise.
\end{cfuncdesc}
\begin{cfuncdesc}{unsigned long}{NA_elements}{PyArrayObject*}
This function returns the total count of elements in an array, essentially the
product of the elements of the array's shape.
\end{cfuncdesc}
\begin{cfuncdesc}{PyArrayObject *}{NA_copy}{PyArrayObject*}
This function returns a copy of the given array. The array copy is guaranteed
to be well-behaved, i.e. neither byteswapped, misaligned, nor discontiguous.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_copyArray}{PyArrayObject*to, const PyArrayObject *from}
This function returns a copies one array onto another; used in f2py.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{NA_swapAxes}{PyArrayObject*a, int dim1, int dim2}
This function mutates the specified array \var{a} to exchange the shape and
strides values for the two dimensions, \var{dim1} and \var{dim2}. Negative
dimensions count backwards from the innermost, with -1 being the innermost
dimension. Returns 0 on success and -1 on error.
\end{cfuncdesc}
%% Local Variables:
%% mode: LaTeX
%% mode: auto-fill
%% fill-column: 79
%% indent-tabs-mode: nil
%% ispell-dictionary: "american"
%% reftex-fref-is-default: nil
%% TeX-auto-save: t
%% TeX-command-default: "pdfeLaTeX"
%% TeX-master: "numarray"
%% TeX-parse-self: t
%% End:
|