File: fft.tex

package info (click to toggle)
python-numarray 1.5.2-4
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 8,668 kB
  • ctags: 11,384
  • sloc: ansic: 113,864; python: 22,422; makefile: 197; sh: 11
file content (206 lines) | stat: -rw-r--r-- 8,432 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
\chapter{Fast-Fourier-Transform}
\label{cha:fft}

%begin{latexonly}
\makeatletter \py@reset \makeatother
%end{latexonly}
\declaremodule{extension}{numarray.fft}
\moduleauthor{The numarray team}{numpy-discussion@lists.sourceforge.net}
\modulesynopsis{Fast Fourier Transform}

\begin{quote}
   This package provides functions for one- and two-dimensional
   Fast-Fourier-Transforms (FFT) and inverse FFTs.
\end{quote}


The \module{numarray.fft} module provides a simple interface to the FFTPACK
Fortran library, which is a powerful standard library for doing fast Fourier
transforms of real and complex data sets, or the C fftpack library, which is
algorithmically based on FFTPACK and provides a compatible interface.


\section{Installation}
\label{sec:FFT:installation}

The default installation uses the provided \module{numarray.fft.fftpack} C
implementation of these routines and this works without any further
interaction.


\subsection{Installation using FFTPACK}
\label{sec:FFT:install-lapack}

On some platforms, precompiled optimized versions of the FFTPACK libraries are
preinstalled on the operating system, and the setup procedure needs to be
modified to force the \module{numarray.fft} module to be linked against those
rather than the builtin replacement functions.




\section{FFT Python Interface}
\label{sec:FFT:python-interface}

The Python user imports the \module{numarray.fft} module, which provides 
a set of utility functions of the most commonly used FFT routines, and
allows the specification of which axes (dimensions) of the input arrays are to
be used for the FFT's. These routines are:

\begin{funcdesc}{fft}{a, n=None, axis=-1} 
   Performs a \constant{n}-point discrete Fourier transform of the array 
   \constant{a}, \constant{n} defaults to the size of \constant{a}. It is 
   most efficient for \constant{n} a power of two. If \constant{n} is 
   larger than \code{len(a)}, then \constant{a} will be
   zero-padded to make up the difference. If \constant{n} is smaller than
   \code{len(a)}, then \constant{a} will be aliased to reduce its size. This
   also stores a cache of working memory for different sizes of 
   \module{fft}'s, so you could theoretically run into memory problems if 
   you call this too many times with too many different \constant{n}'s.
   
   The FFT is performed along the axis indicated by the \constant{axis} 
   argument, which defaults to be the last dimension of \constant{a}.
   
   The format of the returned array is a complex array of the same shape as
   \constant{a}, where the first element in the result array contains the DC
   (steady-state) value of the FFT.
   \remark{missing: ..., and where each successive ...}

   Some examples are:
\begin{verbatim}
>>> a = array([1., 0., 1., 0., 1., 0., 1., 0.]) + 10
>>> b = array([0., 1., 0., 1., 0., 1., 0., 1.]) + 10
>>> c = array([0., 1., 0., 0., 0., 1., 0., 0.]) + 10
>>> print numarray.fft.fft(a).real
[ 84.   0.   0.   0.   4.   0.   0.   0.]
>>> print numarray.fft.fft(b).real
[ 84.   0.   0.   0.  -4.   0.   0.   0.]
>>> print numarray.fft.fft(c).real
[ 82.   0.   0.   0.  -2.   0.   0.   0.]
\end{verbatim}
\end{funcdesc}
       
\begin{funcdesc}{inverse_fft}{a, n=None, axis=-1}
   Will return the \constant{n} point inverse discrete Fourier transform of
   \constant{a}; \constant{n} defaults to the length of \constant{a}. 
   It is most efficient for \constant{n} a power of two.  If \constant{n} 
   is larger than \constant{a}, then \constant{a} will be zero-padded to 
   make up the difference.  If \constant{n} is smaller than \constant{a}, 
   then \constant{a} will be aliased to reduce its size.
   This also stores a cache of working memory for different sizes of FFT's, so
   you could theoretically run into memory problems if you call this too many
   times with too many different \constant{n}'s.
\end{funcdesc}
       
\begin{funcdesc}{real_fft}{a, n=None, axis=-1}
   Will return the \constant{n} point discrete Fourier transform of the 
   real valued array \constant{a}; \constant{n} defaults to the length of 
   \constant{a}.  It is most efficient for \constant{n} a power of two.  
   The returned array will be one half of the symmetric complex transform of 
   the real array.

\begin{verbatim}
>>> x = cos(arange(30.0)/30.0*2*pi)
>>> print numarray.fft.real_fft(x)
[ -5.82867088e-16 +0.00000000e+00j   1.50000000e+01 -3.08862614e-15j
   7.13643755e-16 -1.04457106e-15j   1.13047653e-15 -3.23843935e-15j
  -1.52158521e-15 +1.14787259e-15j   3.60822483e-16 +3.60555504e-16j
   1.34237661e-15 +2.05127011e-15j   1.98981960e-16 -1.02472357e-15j
   1.55899290e-15 -9.94619821e-16j  -1.05417678e-15 -2.33364171e-17j
  -2.08166817e-16 +1.00955541e-15j  -1.34094426e-15 +8.88633386e-16j
   5.67513742e-16 -2.24823896e-15j   2.13735778e-15 -5.68448962e-16j
  -9.55398954e-16 +7.76890265e-16j  -1.05471187e-15 +0.00000000e+00j]
\end{verbatim}
\end{funcdesc}
       
\begin{funcdesc}{inverse_real_fft}{a, n=None, axis=-1}
   Will return the inverse FFT of the real valued array \constant{a}.
\end{funcdesc}
       
\begin{funcdesc}{fft2d}{a, s=None, axes=(-2,-1)}
   Will return the 2-dimensional FFT of the array \constant{a}.  This
   is really just \function{fft_nd()} with different default behavior.
\end{funcdesc}
       
\begin{funcdesc}{inverse_fft2d}{a, s=None, axes=(-2,-1)}
  The inverse of \function{fft2d()}. This is really just
  \function{inverse_fftnd()} with different default behavior.
\end{funcdesc}
       
\begin{funcdesc}{real_fft2d}{a, s=None, axes=(-2,-1)}
   Will return the 2-D FFT of the real valued array \constant{a}.
\end{funcdesc}
            
\begin{funcdesc}{inverse_real_fft2d}{a, s=None, axes=(-2,-1)}
  The inverse of \function{real_fft2d()}. This is really just
  \function{inverse_real_fftnd()} with different default behavior.
\end{funcdesc}

            
\section{fftpack Python Interface}
\label{sec:FFT:c-api}

%begin{latexonly}
\makeatletter \py@reset \makeatother
%end{latexonly}
\declaremodule{extension}{numarray.fft.fftpack}
\moduleauthor{The numarray team}{numpy-discussion@lists.sourceforge.net}
\modulesynopsis{Fast Fourier Transform}

The interface to the FFTPACK library is performed via the \module{fftpack}
module, which is responsible for making sure that the arrays sent to the
FFTPACK routines are in the right format (contiguous memory locations, right
numerical storage format, etc). It provides interfaces to the following FFTPACK
routines, which are also the names of the Python functions:
\begin{funcdesc}{cffti}{i}
\end{funcdesc}
\begin{funcdesc}{cfftf}{data, savearea}
\end{funcdesc}
\begin{funcdesc}{cfftb}{data, savearea}
\end{funcdesc}
\begin{funcdesc}{rffti}{i}
\end{funcdesc}
\begin{funcdesc}{rfftf}{data, savearea}
\end{funcdesc}
\begin{funcdesc}{rfftb}{data, savearea}
\end{funcdesc}
The routines which start with \texttt{c} expect arrays of complex numbers, the
routines which start with \texttt{r} expect real numbers only. The routines
which end with \texttt{i} are the initalization functions, those which end with
\texttt{f} perform the forward FFTs and those which end with \texttt{b} perform
the backwards FFTs.

The initialization functions require a single integer argument corresponding to
the size of the dataset, and returns a work array. The forward and backwards
FFTs require two array arguments -- the first is the data array, the second is
the work array returned by the initialization function. They return arrays
corresponding to the coefficients of the FFT, with the first element in the
returned array corresponding to the DC component, the second one to the first
fundamental, etc.The length of the returned array is 1 + half the length of the
input array in the case of real FFTs, and the same size as the input array in
the case of complex data.
\begin{verbatim}
>>> import numarray.fft.fftpack as fftpack
>>> x = cos(arange(30.0)/30.0*2*pi)
>>> w = fftpack.rffti(30)
>>> f = fftpack.rfftf(x, w)
>>> print f[0:5]
[ -5.68989300e-16 +0.00000000e+00j   1.50000000e+01 -3.08862614e-15j
        6.86516117e-16 -1.00588467e-15j   1.12688689e-15 -3.19983494e-15j
       -1.52158521e-15 +1.14787259e-15j]
\end{verbatim}



%% Local Variables:
%% mode: LaTeX
%% mode: auto-fill
%% fill-column: 79
%% indent-tabs-mode: nil
%% ispell-dictionary: "american"
%% reftex-fref-is-default: nil
%% TeX-auto-save: t
%% TeX-command-default: "pdfeLaTeX"
%% TeX-master: "numarray"
%% TeX-parse-self: t
%% End: