File: intermediate.tex

package info (click to toggle)
python-numarray 1.5.2-4
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 8,668 kB
  • ctags: 11,384
  • sloc: ansic: 113,864; python: 22,422; makefile: 197; sh: 11
file content (181 lines) | stat: -rw-r--r-- 6,442 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
\chapter{Intermediate Topics}
\label{cha:intermediate-topics}

This chapter discusses a few of the more esoteric features of numarray which
are certainly useful but probably not a top priority for new users.

\section{Rank-0 Arrays}
\label{sec:rank-0-arrays}
numarray provides limited support for dimensionless arrays which represent
single values, also known as rank-0 arrays.  Rank-0 arrays are the array
representation of a scalar value.  They have the advantage over scalars that
they include array specific type information, e.g. \var{Int16}.  Rank-0 arrays
can be created as follows:
\begin{verbatim}
>>> a = array(1); a
array(1)
\end{verbatim}
A rank-0 array has a 0-length or empty shape:
\begin{verbatim}
>>> a.shape
()
\end{verbatim}
numarray's rank-0 array handling differs from that of Numeric in two ways.
First, numarray's rank-0 arrays cannot be indexed by 0:
\begin{verbatim}
>>> array(1)[0]
Traceback (most recent call last):
...
IndexError: Too many indices
\end{verbatim}
Second, numarray's rank-0 arrays do not have a length.
\begin{verbatim}
>>> len(array(1))
Traceback (most recent call last):
...
ValueError: Rank-0 array has no length.
\end{verbatim}
Finally, numarray's rank-0 arrays can be converted to a Python scalar by
subscripting with an empty tuple as follows:
\begin{verbatim}
>>> a = array(1)
>>> a[()]
1
\end{verbatim}

\newpage
\section{Exception Handling}
\label{sec:exception-handling}

We desired better control over exception handling than currently exists in
Numeric. This has traditionally been a problem area (see the numerous posts in
\ulink{comp.lang.python}{news:comp.lang.python} regarding floating point
exceptions, especially those by Tim Peters). Numeric raises an exception for
integer computations that result in a divide by zero or multiplications that
result in overflows. The exception is raised after that operation has completed
on all the array elements. No exceptions are raised for floating point errors
(divide by zero, overflow, underflow, and invalid results), the compiler and
processor are left to their default behavior (which is usually to return Infs
and NaNs as values).

The approach for numarray is to provide customizable error handling behavior.
It should be possible to specify three different behaviors for each of the four
error types independently. These are:
\begin{itemize}
\item Ignore the error.
\item Print a warning.
\item Raise a Python exception.
\end{itemize}
The current implementation does that and has been tested successfully on
Windows, Solaris, Redhat and Tru64.  The implementation uses the floating point
processor ``sticky status flags'' to detect errors. One can set the error mode
by calling the error object's setMode method. For example:
\begin{verbatim}
>>> Error.setMode(all="warn") # the default mode
>>> Error.setMode(dividebyzero="raise", underflow="ignore", invalid="warn")
\end{verbatim}

The Error object can also be used in a stacking manner, by using the \function{pushMode}
and \function{popMode} methods rather than \function{setMode}.  For example:
\begin{verbatim}
>>> Error.getMode()
_NumErrorMode(overflow='warn', underflow='warn', dividebyzero='warn', invalid='warn')
>>> Error.pushMode(all="raise") # get really picky...
>>> Error.getMode()
_NumErrorMode(overflow='raise', underflow='raise', dividebyzero='raise', invalid='raise')
>>> Error.popMode()  # pop and return the ``new'' mode
_NumErrorMode(overflow='raise', underflow='raise', dividebyzero='raise', invalid='raise')
>>> Error.getMode()  # verify the original mode is back
_NumErrorMode(overflow='warn', underflow='warn', dividebyzero='warn', invalid='warn')
\end{verbatim}
Integer exception modes work the same way. Although integer computations do not
affect the floating point status flag directly, our code checks the denominator
of 0 in divisions (in much the same way Numeric does) and then performs a
floating point divide by zero to set the status flag (overflows are handled
similarly). So even integer exceptions use the floating point status flags
indirectly.

\newpage
\section{IEEE-754 Not a Number (NAN) and Infinity}
\label{sec:ieee-special-values}
\module{numarray.ieeespecial} has support for manipulating IEEE-754 floating
point special values NaN (Not a Number), Inf (infinity), etc.  The special
values are denoted using lower case as follows:
\begin{verbatim}
>>> import numarray.ieeespecial as ieee
>>> ieee.inf
inf
>>> ieee.plus_inf
inf
>>> ieee.minus_inf
-inf
>>> ieee.nan
nan
>>> ieee.plus_zero
0.0
>>> ieee.minus_zero
-0.0
\end{verbatim}
Note that the representation of IEEE special values is platform dependent so
your Python might for instance say \var{Infinity} rather than \var{inf}.
Below, \var{inf} is seen to arise as the result of floating point division by 0
and \var{nan} is seen to arise from 0 divided by 0:
\begin{verbatim}
>>> a = array([0.0, 1.0])
>>> b = a/0.0
Warning: Encountered invalid numeric result(s)  in divide
Warning: Encountered divide by zero(s)  in divide
>>> b
array([              nan,               inf])
\end{verbatim}
A curious property of \var{nan} is that it does not compare to \emph{itself} as
equal:
\begin{verbatim}
>>> b == ieee.nan
array([0, 0], type=Bool)
\end{verbatim}
The \function{isnan}, \function{isinf}, and \function{isfinite} functions
return boolean arrays which have the value True where the corresponding
predicate holds.  These functions detect bit ranges and are therefore more
robust than simple equality checks.
\begin{verbatim}
>>> ieee.isnan(b)
array([1, 0], type=Bool)
>>> ieee.isinf(b)
array([0, 1], type=Bool)
>>> ieee.isfinite(b)
array([0, 0], type=Bool)
\end{verbatim}
Array based indexing provides a convenient way to replace special values:
\begin{verbatim}
>>> b[ieee.isnan(b)] = 999
>>> b[ieee.isinf(b)] = 5
>>> b
array([ 999.,    5.])
\end{verbatim}

Here's an easy approach for compressing your data arrays to remove
NaNs:
\begin{verbatim}
>>> x, y = arange(10.), arange(10.)
>>> x[5] = ieee.nan
>>> y[6] = ieee.nan
>>> keep = ~ieee.isnan(x) & ~ieee.isnan(y)
>>> x[keep]
array([ 0.,  1.,  2.,  3.,  4.,  7.,  8.,  9.])
>>> y[keep]
array([ 0.,  1.,  2.,  3.,  4.,  7.,  8.,  9.])
\end{verbatim}

%% Local Variables:
%% mode: LaTeX
%% mode: auto-fill
%% fill-column: 79
%% indent-tabs-mode: nil
%% ispell-dictionary: "american"
%% reftex-fref-is-default: nil
%% TeX-auto-save: t
%% TeX-command-default: "pdfeLaTeX"
%% TeX-master: "numarray"
%% TeX-parse-self: t
%% End: