File: linearalgebra.tex

package info (click to toggle)
python-numarray 1.5.2-4
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 8,668 kB
  • ctags: 11,384
  • sloc: ansic: 113,864; python: 22,422; makefile: 197; sh: 11
file content (223 lines) | stat: -rw-r--r-- 8,120 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
\chapter{Linear Algebra}
\label{cha:linear-algebra}

%begin{latexonly}
\makeatletter
\py@reset
\makeatother
%end{latexonly}
\declaremodule[numarray.linearalgebra]{extension}{numarray.linear_algebra}
\moduleauthor{The numarray team}{numpy-discussion@lists.sourceforge.net}
\modulesynopsis{Linear Algebra}

\begin{quote}
  The numarray.linear\_algebra module provides a simple interface to some
  commonly used linear algebra routines.
\end{quote}

The \module{numarray.linear_algebra} module provides a simple high-level
interface to some common linear algebra problems. It uses either the LAPACK
Fortran library or the compatible
\module{\mbox{numarray.linear_algebra.lapack_lite}} C library shipped with
\module{numarray}.

\section{Installation}
\label{sec:LA:installation}

The default installation uses the provided
\module{numarray.linear_algebra.lapack_lite} implementation of these routines
and this works without any further interaction.

Nevertheless if LAPACK is installed already or you are concerned about the
performance of these routines you should consider installing
\module{numarray.linear_algebra} to take advantage of the real LAPACK library.
See the next section for instructions.

\subsection{Installation using LAPACK}
\label{sec:LA:install-lapack}

On some platforms, precompiled optimized versions of the LAPACK and BLAS
libraries are preinstalled on the operating system, and the setup procedure
needs to be modified to force the \module{lapack_lite} module to be linked
against those rather than the builtin replacement functions.

Here's a recipe for building using LAPACK:

\begin{verbatim}
% setenv USE_LAPACK 1
% setenv LINALG_LIB <where your lapack, blas, atlas, etc are>
% setenv LINALG_INCLUDE <where your lapack, blas, atlas headers are>
% python setup.py install --selftest
\end{verbatim}

For your particular system and library installations, you may need to edit
\texttt{addons.py} and adjust the variables \texttt{sourcelist},
\texttt{lapack_dirs}, and \texttt{lapack_libs}.

\note{A frequent request is that somehow the maintainers of Numerical Python
   invent a procedure which will automatically find and use the \emph{best}
   available versions of these libraries.  We welcome any patches that provide
   the functionality in a simple, platform independent, and reliable way.  The
   \ulink{scipy}{http://www.scipy.org} project has done some work to provide
   such functionality, but is probably not mature enough for use by
   \module{numarray} yet.}


\section{Python Interface}
\label{sec:LA:python-interface}

All examples in this section assume that you performed a
\begin{verbatim}
from numarray import *
import numarray.linear_algebra as la
\end{verbatim}

\begin{funcdesc}{cholesky_decomposition}{a}
   This function returns a lower triangular matrix L which, when multiplied by
   its transpose yields the original matrix \code{a}; \code{a} must be 
   square, Hermitian, and positive definite. L is often referred to as the 
   Cholesky lower-triangular square-root of \code{a}.
\end{funcdesc}
 
\begin{funcdesc}{determinant}{a}
   This function returns the determinant of the square matrix \code{a}.
\begin{verbatim}
>>> print a
[[ 1  2]
 [ 3 15]]
>>> print la.determinant(a)
9.0
\end{verbatim}
\end{funcdesc}
 
\begin{funcdesc}{eigenvalues}{a}
   This function returns the eigenvalues of the square matrix \code{a}.
\begin{verbatim}
>>> print a
[[ 1.    0.    0.    0.  ]
 [ 0.    2.    0.    0.01]
 [ 0.    0.    5.    0.  ]
 [ 0.    0.01  0.    2.5 ]]
>>> print la.eigenvalues(a)
[ 2.50019992  1.99980008  1.          5.        ]
\end{verbatim}
\end{funcdesc}
 
\begin{funcdesc}{eigenvectors}{a}
   This function returns both the eigenvalues and the eigenvectors, the latter
   as a two-dimensional array (i.e. a sequence of vectors).
\begin{verbatim}
>>> print a
[[ 1.    0.    0.    0.  ]
 [ 0.    2.    0.    0.01]
 [ 0.    0.    5.    0.  ]
 [ 0.    0.01  0.    2.5 ]]
>>> eval, evec = la.eigenvectors(a)
>>> print eval  # same as eigenvalues()
[ 2.50019992  1.99980008  1.          5.        ]
>>> print transpose(evec)
[[ 0.          0.          1.          0.        ]
 [ 0.01998801  0.99980022  0.          0.        ]
 [ 0.          0.          0.          1.        ]
 [ 0.99980022 -0.01998801  0.          0.        ]]
\end{verbatim}
\end{funcdesc}
 
\begin{funcdesc}{generalized_inverse}{a, rcond=1e-10}
   This function returns the generalized inverse (also known as pseudo-inverse
   or Moore-Penrose-inverse) of the matrix \code{a}. It has numerous 
   applications related to linear equations and least-squares problems.
\begin{verbatim}
>>> ainv = la.generalized_inverse(a)
>>> print array_str(innerproduct(a,ainv),suppress_small=1,precision=8)
[[ 1.  0.  0.  0.]
 [ 0.  1.  0. -0.]
 [ 0.  0.  1.  0.]
 [ 0. -0.  0.  1.]]
\end{verbatim}
\end{funcdesc}
 
\begin{funcdesc}{Heigenvalues}{a}
   returns the (real positive) eigenvalues of the square, Hermitian positive
   definite matrix a.
\end{funcdesc}
 
\begin{funcdesc}{Heigenvectors}{a}
   returns both the (real positive) eigenvalues and the eigenvectors of a
   square, Hermitian positive definite matrix a. The eigenvectors are returned
   in an (orthornormal) two-dimensional matrix.
\end{funcdesc}

\begin{funcdesc}{inverse}{a}
   This function returns the inverse of the specified matrix a which must be
   square and non-singular. To within floating point precision, it should
   always be true that \code{matrixmultiply(a, inverse(a)) ==
      identity(len(a))}.  To test this claim, one can do e.g.:
\begin{verbatim}
>>> a = reshape(arange(25.0), (5,5)) + identity(5)
>>> print a
[[  1.   1.   2.   3.   4.]
 [  5.   7.   7.   8.   9.]
 [ 10.  11.  13.  13.  14.]
 [ 15.  16.  17.  19.  19.]
 [ 20.  21.  22.  23.  25.]]
>>> inv_a = la.inverse(a)
>>> print inv_a
[[ 0.20634921 -0.52380952 -0.25396825  0.01587302  0.28571429]
 [-0.5026455   0.63492063 -0.22751323 -0.08994709  0.04761905]
 [-0.21164021 -0.20634921  0.7989418  -0.1957672  -0.19047619]
 [ 0.07936508 -0.04761905 -0.17460317  0.6984127  -0.42857143]
 [ 0.37037037  0.11111111 -0.14814815 -0.40740741  0.33333333]]
\end{verbatim}
   Verify the inverse by printing the largest absolute element of
   $a\, a^{-1} - identity(5)$:
\begin{verbatim}
>>> print "Inversion error:", maximum.reduce(fabs(ravel(dot(a, inv_a)-identity(5))))
Inversion error: 8.18789480661e-16
\end{verbatim}
\end{funcdesc}
 
\begin{funcdesc}{linear_least_squares}{a, b, rcond=1e-10}
   This function returns the least-squares solution of an overdetermined system
   of linear equations. An optional third argument indicates the cutoff for the
   range of singular values (defaults to $10^{-10}$). There are four return
   values: the least-squares solution itself, the sum of the squared residuals
   (i.e.  the quantity minimized by the solution), the rank of the matrix a,
   and the singular values of a in descending order.
\begin{verbatim}

\end{verbatim}
\end{funcdesc}
 
\begin{funcdesc}{solve_linear_equations}{a, b}
   This function solves a system of linear equations with a square non-singular
   matrix a and a right-hand-side vector b. Several right-hand-side vectors can
   be treated simultaneously by making b a two-dimensional array (i.e. a
   sequence of vectors). The function inverse(a) calculates the inverse of the
   square non-singular matrix a by calling solve_linear_equations(a, b) with a
   suitable b.
\end{funcdesc}
 
\begin{funcdesc}{singular_value_decomposition}{a, full_matrices=0}
   This function returns three arrays V, S, and WT whose matrix product is the
   original matrix a. V and WT are unitary matrices (rank-2 arrays), whereas S
   is the vector (rank-1 array) of diagonal elements of the singular-value
   matrix. This function is mainly used to check whether (and in what way) a
   matrix is ill-conditioned.
\end{funcdesc}
 



%% Local Variables:
%% mode: LaTeX
%% mode: auto-fill
%% fill-column: 79
%% indent-tabs-mode: nil
%% ispell-dictionary: "american"
%% reftex-fref-is-default: nil
%% TeX-auto-save: t
%% TeX-command-default: "pdfeLaTeX"
%% TeX-master: "numarray"
%% TeX-parse-self: t
%% End: