1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
|
\chapter{Masked Arrays}
\label{cha:masked-arrays}
%begin{latexonly}
\makeatletter
\py@reset
\makeatother
%end{latexonly}
\declaremodule{extension}{numarray.ma}
\moduleauthor{The numarray team}{numpy-discussion@lists.sourceforge.net}
\modulesynopsis{Masked Arrays}
\index{MaskedArray|see{numarray.ma}}
\index{observations, dealing with missing}
\begin{quote}
Masked arrays are arrays that may have missing or invalid entries. Module
\module{numarray.ma} provides a nearly work-alike replacement for numarray
that supports data arrays with masks.
\end{quote}
\section{What is a masked array?}
\label{sec:numarray.ma:what-is-a-masked-array}
Masked arrays are arrays that may have missing or invalid entries. Module
\module{numarray.ma} provides a work-alike replacement for \module{\numarray}
that supports data arrays with masks. A mask is either None or an array of ones
and zeros, that determines for each element of the masked array whether or not
it contains an invalid entry. The package assures that invalid entries are not
used in computations. A particular element is said to be masked
(\index{numarray.ma!invalid}invalid) if the mask is not None and the
corresponding element of the mask is 1; otherwise it is unmasked
(\index{numarray.ma!valid}valid).
This package was written by \index{Dubois, Paul F.}Paul F.\ Dubois at Lawrence
Livermore National Laboratory. Please see the legal notice in the software and
section \ref{sec:legal-notice} ``License and disclaimer for packages
numarray.ma''.
\section{Using numarray.ma}
\label{sec:numarray.ma:using}
Use numarray.ma as a replacement for numarray:
\begin{verbatim}
from numarray.ma import *
>>> x = array([1, 2, 3])
\end{verbatim}
To create an array with the second element invalid, we would do:
\begin{verbatim}
>>> y = array([1, 2, 3], mask = [0, 1, 0])
\end{verbatim}
To create a masked array where all values ``near'' 1.e20 are invalid, we can
do:
\begin{verbatim}
>>> z = masked_values([1.0, 1.e20, 3.0, 4.0], 1.e20)
\end{verbatim}
For a complete discussion of creation methods for masked arrays please see
section \ref{sec:numarray.ma:constructing-mask-arrays} ``Constructing masked
arrays''.
The \module{\numarray} module is an attribute in \module{numarray.ma}, so to
execute a method \method{foo} from numarray, you can reference it as
\method{numarray.foo}.
Usually people use both numarray.ma and numarray this way, but of course you can
always fully-qualify the names:
\begin{verbatim}
>>> import numarray.ma
>>> x = numarray.ma.array([1, 2, 3])
\end{verbatim}
The principal feature of module \module{numarray.ma} is class
\class{MaskedArray}, the class whose instances are returned by the array
constructors and most functions in module \module{numarray.ma}. We will discuss
this class first, and later cover the attributes and functions in module
\module{numarray.ma}. For now suffice it to say that among the attributes of
the module are the constants from module \module{\numarray} including those for
declaring typecodes, \constant{NewAxis}, and the mathematical constants such as
\constant{pi} and \constant{e}. An additional typecode, \class{MaskType}, is
the typecode used for masks.
\section{Class MaskedArray}
\label{sec:numarray.ma:class-maskedarray}
\index{numarray.ma!MaskedArray@\class{MaskedArray}}
In Module \module{numarray.ma}, an array is an instance of class
\class{MaskedArray}, which is defined in the module \module{numarray.ma}. An
instance of class \class{MaskedArray} can be thought of as containing the
following parts:
\begin{itemize}
\item An array of data, of any shape;
\item A mask of ones and zeros of the same shape as the data where a one value
(true) indicates that the element is masked and the corresponding data is
invalid.
\item A ``fill value'' --- this is a value that may be used to replace the
invalid entries in order to return a plain \module{\numarray} array. The
chief method that does this is the method \method{filled} discussed below.
\end{itemize}
We will use the terms ``invalid value'' and ``invalid entry'' to refer to the
data value at a place corresponding to a mask value of 1. It should be
emphasized that the invalid values are \emph{never} used in any computation,
and that the fill value is not used for \emph{any} computational purpose. When
an instance \var{x} of class \class{MaskedArray} is converted to its string
representation, it is the result returned by \code{filled(x)} that is converted
to a string.
\subsection{Attributes of masked arrays}
\label{sec:numarray.ma:attr-mask-arrays}
\begin{memberdesc}[MaskedArray]{flat}
(deprecated) \remark{why deprecated in numarray?}
Returns the masked array as a one-dimensional one. This is
provided for compatibility with \module{\numarray}. \method{ravel} is
preferred. \member{flat} can be assigned to: \samp{x.flat = value} will
change the values of \var{x}.
\end{memberdesc}
\begin{memberdesc}[MaskedArray]{real}
Returns the real part of the array if complex. It can be assigned to:
\samp{x.real = value} will change the real parts of \var{x}.
\end{memberdesc}
\begin{memberdesc}[MaskedArray]{imaginary}
Returns the imaginary part of the array if complex. It can be assigned to:
\samp{x.imaginary = value} will change the imaginary parts of x.
\end{memberdesc}
\begin{memberdesc}[MaskedArray]{shape}
The shape of a masked array can be accessed or changed by using the special
attribute \member{shape}, as with \module{\numarray} arrays. It can be
assigned to: \samp{x.shape = newshape} will change the shape of \var{x}. The
new shape has to describe the same total number of elements.
\remark{Correct?}
\end{memberdesc}
\begin{memberdesc}[MaskedArray]{shared_data}
This read-only flag if true indicates that the masked array shared a
reference with the original data used to construct it at the time of
construction. Changes to the original array will affect the masked array.
(This is not the default behavior; see ``Copying or not''.) This flag is
informational only.
\end{memberdesc}
\begin{memberdesc}[MaskedArray]{shared_mask}
This read-only flag if true indicates that the masked array \emph{currently}
shares a reference to the mask used to create it. Unlike
\member{shared_data}, this flag may change as the result of modifying the
array contents, as the mask uses copy on write semantics if it is shared.
\end{memberdesc}
\subsection{Methods on masked arrays}
\label{sec:numarray.ma:meth-mask-arrays}
\begin{methoddesc}[MaskedArray]{__array__}
A special method allows conversion to a \module{\numarray} array if no
element is actually masked. If there is a masked element, an
\exception{numarray.maError} exception is thrown. Many \module{\numarray}
functions, such as \function{numarray.sqrt}, will attempt this conversion on
their arguments. See also module function \function{filled} in section
\ref{sec:numarray.ma:meth-mask-arrays}.
\begin{verbatim}
yn = numarray.array(x)
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{astype}{type}
Return \var{self} as array of given \var{type}.
\begin{verbatim}
y = x.astype(Float32)
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{byte_swapped}{}
Returns the raw data \class{\numarray} byte-swapped; included for
consistency with \module{\numarray} but probably meaningless.
\begin{verbatim}
y = x.byte_swapped()
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{compressed}{}
Return an array of the valid elements. Result is one-dimensional.
\begin{verbatim}
y = x.compressed()
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{count}{axis=None}
If \var{axis} is \constant{None} return the count of non-masked elements in
the whole array. Otherwise return an array of such counts along the axis
given.
\begin{verbatim}
n = x.count()
y = x.count(0)
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{fill_value}{}
Get the current fill value.
\begin{verbatim}
v = x.fill_value()
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{filled}{fill_value=None}
Returns a \module{\numarray} array with the masked values replaced by the
fill value. See also the description of module function filled in section
\ref{sec:numarray.ma:meth-mask-arrays}.
\begin{verbatim}
yn = x.filled()
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{ids}{}
Return the ids of the data and mask areas.
\begin{verbatim}
id1, id2 = x.ids()
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{iscontiguous}{}
Is the data area contiguous? See \method{numarray.scontiguous} in section
\ref{arraymethod:iscontiguous}.
\begin{verbatim}
if x.iscontiguous():
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{itemsize}{}
Size of individual data items in bytes. \samp{n = x.itemsize()}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{mask}{}
Return the data mask, or \constant{None}.
\begin{verbatim}
m = x.mask()
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{put}{values}
Set the value at each non-masked entry to the corresponding entry in
\var{values}. The mask is unchanged. See also module function
\function{put}.
\begin{verbatim}
x.put(values)
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{putmask}{values}
Eliminate any masked values by setting the value at each masked entry to the
corresponding entry in \var{values}. Set the mask to \constant{None}.
\begin{verbatim}
x.putmask(values)
assert getmask(x) is None
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{raw_data}{}
A reference to the non-filled data; portions may be meaningless. Expert use
only.
\begin{verbatim}
d = x.raw_data ()
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{savespace}{v}
Set the spacesaver attribute to \var{v}.
\begin{verbatim}
x.savespace (1)
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{set_fill_value}{v}
Set the fill value to \var{v}. Omit v to restore default.
\samp{x.set_fill_value(1.e21)} \remark{Give correct default value for v.}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{set_shape}{args...}
Set the shape.
\begin{verbatim}
x.set_shape (3, 12)
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{size}{axis}
Number of elements in array, or along a particular \var{axis}.
\begin{verbatim}
totalsize = x.size ()
col_len = x.size (1)
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{spacesaver}{}
Query the spacesave flag.
\begin{verbatim}
flag = x.spacesaver()
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{tolist}{fill_value=None}
Return the Python \class{list} \code{self.filled(fill_value).tolist()}; note
that masked values are filled.
\begin{verbatim}
alist=x.tolist()
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{tostring}{fill_value=None}
Return the string \code{self.filled(fill_value).tostring()s = x.tostring()}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{typecode}{}
Return the type of the data. See module \module{Precision}, section \ref{TBD}.
\begin{verbatim}
z = x.typecode()
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{unmask}{}
Replaces the mask by \constant{None} if possible. Subsequent operations may
be faster if the array previously had an all-zero mask.
\begin{verbatim}
x.unmask()
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}[MaskedArray]{unshare_mask}{}
If shared_mask is currently true, replaces the reference to it with a
copy.
\begin{verbatim}
x.unshare_mask()
\end{verbatim}
\end{methoddesc}
\subsection{Constructing masked arrays}
\label{sec:numarray.ma:constructing-mask-arrays}
\index{numarray.ma!constructor}
\begin{methoddesc}[MaskedArray]{array}
{data, type=None, copy=1, savespace=0, mask=None, fill_value=None}
Creates a masked array with the given \var{data} and
\var{mask}. The name \class{array} is simply an alias for the class name,
\class{MaskedArray}. The fill value is set to \var{fill_value}, and the
\var{savespace} flag is applied. If \var{data} is a \class{MaskedArray}, its
\constant{mask}, \constant{typecode}, \constant{spacesaver} flag, and
\constant{fill_value} will be used unless specifically overridden by one of
the remaining arguments. In particular, if \var{d} is a masked array,
\code{array(d, copy=0)} is \var{d}.
\end{methoddesc}
\index{numarray.ma!constructor}
\begin{methoddesc}[MaskedArray]{masked_array}{data, mask=None, fill_value=None}
This is an easier-to-use version of \method{array},
for the common case of \code{typecode = None}, \code{copy = 0}. When
\var{data} is newly-created this function can be used to make it a masked
array without copying the data if \var{data} is already a \module{\numarray}
array.
\end{methoddesc}
\index{numarray.ma!constructor}
\begin{methoddesc}[MaskedArray]{masked_values}{data, value, rtol=1.e-5, atol=1.e-8, type=None, copy=1, savespace=0)}
Constructs a masked array whose mask is set at those places where
\begin{equation}
\abs(\var{data} - \var{value}) < \var{atol} + \var{rtol} * \abs(\var{data})
\end{equation}
That is a careful way of saying that those elements of the \var{data} that
have a value of \var{value} (to within a tolerance) are to be treated as
invalid. If data is not of a floating point type, calls
\method{masked_object} instead.
\end{methoddesc}
\index{numarray.ma!constructor}
\begin{methoddesc}[MaskedArray]{masked_object}{data, value, copy=1, savespace=0}
Creates a masked array with those entries marked invalid that are equal to
\var{value}. Again, \var{copy} and \var{/savespace} are passed on to the
\module{\numarray} array constructor.
\end{methoddesc}
\index{numarray.ma!constructor}
\begin{methoddesc}[MaskedArray]{asarray}{data, type=None}
This is the same as \code{array(data, typecode, copy=0)}. It is a short way
of ensuring that something is an instance of \class{MaskedArray} of a given
\var{type} before proceeding, as in \samp{data = asarray(data)}.
If \var{data} already is a masked array and \var{type} is \constant{None}
then the return value is \var{data}; nothing is copied in that case.
\end{methoddesc}
\index{numarray.ma!constructor}
\begin{methoddesc}[MaskedArray]{masked_where}{condition, data, copy=1)}
Creates a masked array whose shape is that of \var{condition}, whose values
are those of \var{data}, and which is masked where elements of
\var{condition} are true.
\end{methoddesc}
\index{numarray.ma!constructor}
\begin{datadesc}{masked}
This is a module constant that represents a scalar masked value. For
example, if \var{x} is a masked array and a particular location such as
\code{x[1]} is masked, the quantity \code{x[1]} will be this special
constant. This special element is discussed more fully in section
\ref{sec:numarray.ma:constant-masked} ``The constant \constant{masked}''.
\end{datadesc}
The following additional constructors are provided for convenience.
\index{numarray.ma!constructor}
\begin{methoddesc}[MaskedArray]{masked_equal}{data, value, copy=1}
\end{methoddesc} \index{numarray.ma!constructor}
\begin{methoddesc}[MaskedArray]{masked_greater}{data, value, copy=1}
\end{methoddesc} \index{numarray.ma!constructor}
\begin{methoddesc}[MaskedArray]{masked_greater_equal}{data, value, copy=1}
\end{methoddesc} \index{numarray.ma!constructor}
\begin{methoddesc}[MaskedArray]{masked_less}{data, value, copy=1}
\end{methoddesc} \index{numarray.ma!constructor}
\begin{methoddesc}[MaskedArray]{masked_less_equal}{data, value, copy=1}
\end{methoddesc} \index{numarray.ma!constructor}
\begin{methoddesc}[MaskedArray]{masked_not_equal}{data, value, copy=1}
\method{masked_greater} is equivalent to \code{masked_where(greater(data,
value), data))}. Similarly, \method{masked_greater_equal},
\method{masked_equal}, \method{masked_not_equal}, \method{masked_less},
\method{masked_less_equal} are called in the same way with the obvious
meanings. Note that for floating point data, \method{masked_values} is
preferable to \method{masked_equal} in most cases. \remark{because...}
\end{methoddesc}
\index{numarray.ma!constructor}
\begin{methoddesc}[MaskedArray]{masked_inside}{data, v1, v2, copy=1}
Creates an array with values in the closed interval \code{[v1, v2]} masked.
\var{v1} and \var{v2} may be in either order.
\end{methoddesc}
\index{numarray.ma!constructor}
\begin{methoddesc}[MaskedArray]{masked_outside}{data, v1, v2, copy=1}
Creates an array with values outside the closed interval \code{[v1, v2]}
masked. \var{v1} and \var{v2} may be in either order.
\end{methoddesc}
On entry to any of these constructors, \var{data} must be any object which the
\module{\numarray} package can accept to create an array (with the desired
\var{type}, if specified). The \var{mask}, if given, must be \constant{None} or
any object that can be turned into a \module{\numarray} array of integer type
(it will be converted to type \class{MaskType}, if necessary), have the same
shape as \var{data}, and contain only values of 0 or 1.
If the \var{mask} is not \constant{None} but its shape does not match that of
\var{data}, an exception will be thrown, unless one of the two is of length 1,
in which case the scalar will be resized (using \method{numarray.resize}) to
match the other.
See section \ref{sec:numarray.ma:copying-or-not} ``Copying or not'' for a
discussion of whether or not the resulting array shares its data or its mask
with the arguments given to these constructors.
\paragraph*{Important Tip} \method{filled} is very important. It converts its
argument to a plain \module{\numarray} array.
\begin{funcdesc}{filled}{x, value=None}
Returns \var{x} with any invalid locations replaced by a fill \var{value}.
\function{filled} is guaranteed to return a plain \module{\numarray} array.
The argument \var{x} does not have to be a masked array or even an array,
just something that \module{\numarray}/\module{numarray.ma} can turn into
one.
\begin{itemize}
\item If \var{x} is not a masked array, and not a \module{\numarray} array,
\code{numarray.array(x)} is returned.
\item If \var{x} is a contiguous \module{\numarray} array then \var{x} is
returned. (A \module{\numarray} array is contiguous if its data storage
region is layed out in column-major order; \module{\numarray} allows
non-contiguous arrays to exist but they are not allowed in certain
operations).
\item If \var{x} is a masked array, but the mask is \constant{None}, and
\var{x}'s data array is contiguous, then it is returned. If the data
array is not contiguous, a (contiguous) copy of it is returned.
\item If \var{x} is a masked array with an actual mask, then an array formed
by replacing the invalid entries with \var{value}, or
\code{fill_value(x)} if \var{value} is \constant{None}, is returned. If
the fill value used is of a different type or precision than \var{x}, the
result may be of a different type or precision than \var{x}.
\end{itemize}
Note that a new array is created only if necessary to create a correctly
filled, contiguous, \module{\numarray} array.
The function \method{filled} plays a central role in our design. It is the
``exit'' back to \module{\numarray}, and is used whenever the invalid values
must be replaced before an operation. For example, adding two masked arrays
\var{a} and \var{b} is roughly:
\begin{verbatim}
masked_array(filled(a, 0) + filled(b, 0), mask_or(getmask(a), getmask(b))
\end{verbatim}
That is, fill the invalid entries of \var{a} and \var{b} with zeros, add them
up, and declare any entry of the result invalid if either \var{a} or \var{b}
was invalid at that spot. The functions \function{getmask} and
\function{mask_or} are discussed later.
\function{filled} also can be used to simply be certain that some expression is
a contiguous \module{\numarray} array at little cost. If its argument is a
\module{\numarray} array already, it is returned without copying.
If you are certain that a masked array \var{x} contains a mask that is None or
is all zeros, you can convert it to a numarray array with the
\method{numarray.array(x)} constructor. If you turn out to be wrong, an
\exception{MAError} exception is raised.
\end{funcdesc}
\begin{funcdesc}{fill_value}{x}
\end{funcdesc}
\begin{methoddesc}[MaskedArray]{fill_value}{}
\code{fill_value(x)} and the method \code{x.fill_value()} on masked arrays,
return a value suitable for filling \var{x} based on its type. If \var{x}
is a masked array, then \var{x.fill_value()} results. The returned value for
a given type can be changed by assigning to the following names in module
\module{numarray.ma}. They should be set to scalars or one element arrays.
\index{numarray.ma!default_real_fill_value@\constant{default_real_fill_value}}
\index{numarray.ma!default_complex_fill_value@\constant{default_complex_fill_value}}
\index{numarray.ma!default_character_fill_value@\constant{default_character_fill_value}}
\index{numarray.ma!default_integer_fill_value@\constant{default_integer_fill_value}}
\index{numarray.ma!default_object_fill_value@\constant{default_object_fill_value}}
\begin{verbatim}
default_real_fill_value = numarray.array([1.0e20], Float32)
default_complex_fill_value = numarray.array([1.0e20 + 0.0j], Complex32)
default_character_fill_value = masked
default_integer_fill_value = numarray.array([0]).astype(UnsignedInt8)
default_object_fill_value = masked
\end{verbatim}
The variable \var{masked} is a module variable of \module{numarray.ma} and
is discussed in section \ref{sec:numarray.ma:constant-masked}. Calling
\function{filled} with a \var{fill_value} of \constant{masked} sometimes
produces a useful printed representation of a masked array. The function
\function{fill_value} works on any kind of object.
\end{methoddesc}
\index{numarray.ma!set_fill_value@\method{set_fill_value}}\code{set_fill_value(a,
fill_value)} is the same as \code{a.set_fill_value (fill_value)} if \var{a}
is a masked array; otherwise it does nothing. Please note that the fill
value is mostly cosmetic; it is used when it is needed to convert the masked
array to a plain \module{\numarray} array but not involved in most
operations. In particular, setting the \member{fill_value} to
\constant{1.e20} will \emph{not}, repeat not, cause elements of the array
whose values are currently 1.e20 to be masked. For that sort of behavior use
the \method{masked_value} constructor.
\subsection{What are masks?}
\label{sec:numarray.ma:what-are-masks}
\index{masks, description of}
\index{masks, savespace attribute}
Masks are either \constant{None} or 1-byte \module{\numarray} arrays of 1's and
0's. To avoid excessive performance penalties, mask arrays are never checked to
be sure that the values are 1's and 0's, and supplying a \var{mask} argument to
a constructor with an illegal mask will have undefined consequences later.
\emph{Masks have the savespace attribute set.} This attribute, discussed in
part \ref{part:numerical-python}, may have surprising consequences if you
attempt to do any operations on them other than those supplied by this package.
In particular, do not add or multiply a quantity involving a mask. For example,
if \var{m} is a mask consisting of 1080 1 values, \code{sum(m)} is 56, not
1080. Oops.
\subsection{Working with masks}
\begin{funcdesc}{is_mask}{m}
Returns true if \var{m} is of a type and precision that would be allowed as
the mask field of a masked array (that is, it is an array of integers with
\module{\numarray}'s typecode \class{MaskType}, or it is \constant{None}).
To be a legal mask, \var{m} should contain only zeros or ones, but this is
not checked.
\end{funcdesc}
\begin{funcdesc}{make_mask}{m, copy=0, flag=0}
Returns an object whose entries are equal to \var{m} and for which
\function{is_mask} would return true. If \var{m} is already a mask or
\constant{None}, it returns \var{m} or a copy of it. Otherwise it will
attempt to make a mask, so it will accept any sequence of integers for
\var{m}. If \var{flag} is true, \method{make_mask} returns \constant{None}
if its return value otherwise would contain no true elements. To make a
legal mask, \var{m} should contain only zeros or ones, but this is not
checked.
\end{funcdesc}
\begin{funcdesc}{make_mask_none}{s}
Returns a mask of all zeros of shape \var{s} (deprecated name:
\index{numarray.ma!create_mask@\method{create_mask}
(deprecated)|see{\method{make_mask_none}}}create_mask).
\end{funcdesc}
\begin{funcdesc}{getmask}{x}
Returns \index{numarray.ma!mask@\method{mask}}\code{x.mask()}, the mask of
\var{x}, if \var{x} is a masked array, and \constant{None} otherwise.
\note{\function{getmask} may return \constant{None} if \var{x} is a masked
array but has a mask of \constant{None}. (Please see caution above about
operating on the result).}
\end{funcdesc}
\begin{funcdesc}{getmaskarray}{x}
Returns \code{x.mask()} if \var{x} is a masked array and has a mask that is
not \constant{None}; otherwise it returns a zero mask array of the same
shape as \var{x}. Unlike \method{getmask}, \method{getmaskarray} always
returns an \module{\numarray} array of typecode \class{MaskType}. (Please
see caution above about operating on the result).
\end{funcdesc}
\begin{funcdesc}{mask_or}{m1, m2}
Returns an object which when used as a mask behaves like the element-wise
``logical or'' of \var{m1} and \var{m2}, where \var{m1} and \var{/m2} are
either masks or \constant{None} (e.g., they are the results of calling
\method{getmask}). A \constant{None} is treated as everywhere false. If both
\var{m1} and \var{m2} are \constant{None}, it returns \constant{None}. If
just one of them is \constant{None}, it returns the other. If \var{m1} and
\var{m2} refer to the same object, a reference to that object is returned.
\end{funcdesc}
\subsection{Operations}
\label{sec:numarray.ma:operations}
Masked arrays support the operators $+$, $*$, $/$, $-$, $**$, and unary plus
and minus. The other operand can be another masked array, a scalar, a
\module{\numarray} array, or something \method{numarray.array} can convert to a
\module{\numarray} array. The results are masked arrays.
In addition masked arrays support the in-place operators $+=$, $-=$, $*=$, and
$/=$. Implementation of in-place operators differs from \module{\numarray}
semantics in being more generous about converting the right-hand side to the
required type: any kind or lesser type accepted via an \method{astype}
conversion. In-place operators truly operate in-place when the target is not
masked.
\subsection{Copying or not?}
\label{sec:numarray.ma:copying-or-not}
Depending on the arguments results of constructors may or may not contain a
separate copy of the data or mask arguments. The easiest way to think about
this is as follows: the given field, be it data or a mask, is required to be a
\module{\numarray} array, possibly with a given typecode, and a mask's shape
must match that of the data. If the copy argument is zero, and the candidate
array otherwise qualifies, a reference will be made instead of a copy. If for
any reason the data is unsuitable as is, an attempt will be made to make a copy
that is suitable. Should that fail, an exception will be thrown. Thus, a
\code{copy=0} argument is more of a hope than a command.
If the basic array \index{numarray.ma!constructor}constructor is given a masked
array as the first argument, its mask, typecode, spacesaver flag, and fill
value will be used unless specifically specified by one of the remaining
arguments. In particular, if \var{d} is a masked array, \code{array(d, copy=0)}
is \var{d}.
Since the default behavior for masks is to use a reference if possible, rather
than a copy, which produces a sizeable time and space savings, it is especially
important not to modify something you used as a mask argument to a masked array
creation routine, if it was a \module{\numarray} array of typecode
\class{MaskType}.
\subsection{Behaviors}
\label{sec:numarray.ma:behaviors}
\begin{funcdesc}{float}{a}
\end{funcdesc}
\begin{funcdesc}{int}{a}
The conversion operators \function{float}, and \function{int} are defined
to operate on masked arrays consisting of a single unmasked element.
Masked values and multi-element arrays are not convertible.
\end{funcdesc}
\begin{funcdesc}{repr}{a}
\end{funcdesc}
\begin{funcdesc}{str}{a}
A masked array defines the conversion operators \function{str} and
\function{repr} by applying the corresponding operator to the
\module{\numarray} array \code{filled(a)}.
\end{funcdesc}
\subsection{Indexing and Slicing}
\label{sec:numarray.ma:indexing-slicing}
Indexing and slicing differ from Numeric: while generally the same, they return
a copy, not a reference, when used in an expression that produces a non-scalar
result. Consider this example:
\begin{verbatim}
from Numeric import *
x = array([1.,2.,3.])
y = x[1:]
y[0] = 9.
print x
\end{verbatim}
This will print \code{[1., 9., 3.]} since \code{x[1:]} returns a reference to a
portion of \var{x}. Doing the same operation using \module{numarray.ma},
\begin{verbatim}
from numarray.ma import *
x = array([1.,2.,3.])
y = x[1:]
y[0] = 9.
print x
\end{verbatim}
will print \code{[1., 2., 3.]}, while \var{y} will be a separate array whose
present value would be \code{[9., 3.]}. While sentiment on the correct
semantics here is divided amongst the Numeric Python community as a whole, it
is not divided amongst the author's community, on whose behalf this package is
written.
\subsection{Indexing in assignments}
\label{sec:numarray.ma:indexing-assignments}
Using multiple sets of square brackets on the left side of an assignment
statement will not produce the desired result:
\begin{verbatim}
x = array([[1,2],[3,4]])
x[1][1] = 20. # Error, does not change x
x[1,1] = 20. # Correct, changes x
\end{verbatim}
The reason is that \code{x[1]} is a copy, so changing it changes that copy, not
\var{x}. Always use just one single square bracket for assignments.
\subsection{Operations that produce a scalar result}
\label{sec:numarray.ma:operations-producing-scalars}
If indexing or another operation on a masked array produces a scalar result,
then a scalar value is returned rather than a one-element masked array. This
raises the issue of what to return if that result is masked. The answer is that
the module constant
\index{numarray.ma!masked@\constant{masked}}\constant{masked} is returned. This
constant is discussed in section \ref{sec:numarray.ma:constant-masked}. While
this most frequently occurs from indexing, you can also get such a result from
other functions. For example, averaging a 1-D array, all of whom's values are
invalid, would result in \constant{masked}.
\subsection{Assignment to elements and slices}
\label{sec:numarray.ma:assignments-elements-slices}
Assignment of a normal value to a single element or slice of a masked array has
the effect of clearing the mask in those locations. In this way previously
\index{numarray.ma!invalid}invalid elements become
\index{numarray.ma!valid}valid. The value being assigned is filled first, so
that you are guaranteed that all the elements on the left-hand side are now
valid. \remark{???}
Assignment of \constant{None} to a single element or slice of a masked array
has the effect of setting the mask in those locations, and the locations become
invalid.
Since these operations change the mask, the result afterwards will no longer
share a mask, since masks have copy-on-write semantics.
\section{MaskedArray Attributes}
\label{sec:numarray.ma:attributes}
\begin{datadesc}{e}
\end{datadesc}
\begin{datadesc}{pi}
\end{datadesc}
\begin{datadesc}{NewAxis}
Constants \constant{e}, \constant{pi}, \constant{NewAxis} from
\module{\numarray}, and the constants from module \module{Precision} that
define nice names for the typecodes.
\end{datadesc}
The special variables \index{numarray.ma!masked@\constant{masked}}\constant{masked} and
\index{numarray.ma!masked@\constant{masked}}masked_print_option are discussed in section
\ref{sec:numarray.ma:constant-masked}.
The module \module{\numarray} is an element of \module{numarray.ma}, so after \samp{from
numarray.ma import *}, you can refer to the functions in \module{\numarray} such as
\constant{numarray.ones}; see part \ref{part:numerical-python} for the
constants available in \module{\numarray}.
\section{MaskedArray Functions}
\label{sec:numarray.ma:functions}
Each of the operations discussed below returns an instance of \module{numarray.ma} class
\index{numarray.ma!MaskedArray@\class{MaskedArray}}\class{MaskedArray}, having performed
the desired operation element-wise. In most cases the array arguments can be
masked arrays or \module{\numarray} arrays or something that \module{\numarray}
can turn into a \module{\numarray} array, such as a list of real numbers.
In most cases, if \module{\numarray} has a function of the same name, the
behavior of the one in \module{numarray.ma} is the same, except that it ``respects'' the
mask.
\subsection{Unary functions}
\label{sec:numarray.ma:unary-functions}
The result of a unary operation will be masked wherever the original operand
was masked. It may also be masked if the argument is not in the domain of the
function. The following functions have their standard meaning:
\begin{quote}
\index{absolute@\function{absolute} (in module numarray.ma)}\function{absolute},
\index{arccos@\function{arccos} (in module numarray.ma)}\function{arccos},
\index{arcsin@\function{arcsin} (in module numarray.ma)}\function{arcsin},
\index{arctan@\function{arctan} (in module numarray.ma)}\function{arctan},
\index{around@\function{around} (in module numarray.ma)}\function{around},
\index{conjugate@\function{conjugate} (in module numarray.ma)}\function{conjugate},
\index{cos@\function{cos} (in module numarray.ma)}\function{cos},
\index{cosh@\function{cosh} (in module numarray.ma)}\function{cosh},
\index{exp@\function{exp} (in module numarray.ma)}\function{exp},
\index{floor@\function{floor} (in module numarray.ma)}\function{floor},
\index{log@\function{log} (in module numarray.ma)}\function{log},
\index{log10@\function{log10} (in module numarray.ma)}\function{log10},
\index{negative@\function{negative} (in module numarray.ma)}\function{negative}
(also as operator \index{- (in module numarray.ma)}\index{numarray.ma!-}-),
\index{nonzero@\function{nonzero} (in module numarray.ma)}\function{nonzero},
\index{sin@\function{sin} (in module numarray.ma)}\function{sin},
\index{sinh@\function{sinh} (in module numarray.ma)}\function{sinh},
\index{sqrt@\function{sqrt} (in module numarray.ma)}\function{sqrt},
\index{tan@\function{tan} (in module numarray.ma)}\function{tan},
\index{tanh@\function{tanh} (in module numarray.ma)}\function{tanh}.
\end{quote}
\begin{funcdesc}{fabs}{x}
The absolute value of \var{x} as a \constant{Float32} array.
\remark{What happens when you pass \constant{Float64} ?}
\end{funcdesc}
\subsection{Binary functions}
\label{sec:numarray.ma:binary-functions}
Binary functions return a result that is masked wherever either of the operands
were masked; it may also be masked where the arguments are not in the domain of
the function.
\begin{quote}
\index{add@\function{add} (in module numarray.ma)}\function{add}
(also as operator \index{+}\index{numarray.ma!+}+),
\index{subtract@\function{subtract} (in module numarray.ma)}\function{subtract}
\index{- (in module numarray.ma)}\index{numarray.ma!-}(also as operator -),
\index{multiply@\function{multiply} (in module numarray.ma)}\function{multiply}
\index{* (in module numarray.ma)}\index{numarray.ma!*}(also as operator *),
\index{divide@\function{divide} (in module numarray.ma)}\function{divide}
\index{/ (in module numarray.ma)}\index{numarray.ma!/}(also as operator / ),
\index{power@\function{power} (in module numarray.ma)}\function{power}
\index{** (in module numarray.ma)}\index{numarray.ma!**}(also as operator **),
\index{remainder@\function{remainder} (in module numarray.ma)}\function{remainder},
\index{fmod@\function{fmod} (in module numarray.ma)}\function{fmod},
\index{hypot@\function{hypot} (in module numarray.ma)}\function{hypot},
\index{arctan2@\function{arctan2} (in module numarray.ma)}\function{arctan2},
\index{bitwise_and@\function{bitwise_and} (in module numarray.ma)}\function{bitwise_and},
\index{bitwise_or@\function{bitwise_or} (in module numarray.ma)}\function{bitwise_or},
\index{bitwise_xor@\function{bitwise_xor} (in module numarray.ma)}\function{bitwise_xor}.
\end{quote}
\subsection{Comparison operators}
To compare arrays, use the following binary functions. Each of them returns a
masked array of 1's and 0's.
\begin{quote}
\index{equal@\function{equal} (in module numarray.ma)}\function{equal},
\index{greater@\function{greater} (in module numarray.ma)}\function{greater},
\index{greater_equal@\function{greater_equal} (in module numarray.ma)}\function{greater_equal},
\index{less@\function{less} (in module numarray.ma)}\function{less},
\index{less_equal@\function{less_equal} (in module numarray.ma)}\function{less_equal},
\index{not_equal@\function{not_equal} (in module numarray.ma)}\function{not_equal}.
\end{quote}
Note that as in \module{\numarray}, you can use a scalar for one argument and
an array for the other. \note{See section \ref{TBD} why operators and comparison
functions are not excatly equivalent.}
\subsection{Logical operators}
Arrays of logical values can be manipulated with:
\begin{quote}
\index{logical_and@\function{logical_and} (in module numarray.ma)}\function{logical_and},
\index{logical_not@\function{logical_not} (in module numarray.ma)}\function{logical_not (unary)},
\index{logical_or@\function{logical_or} (in module numarray.ma)}\function{logical_or},
\index{logical_xor@\function{logical_xor} (in module numarray.ma)}\function{logical_xor}.
\end{quote}
\begin{funcdesc}{alltrue}{x}
Returns 1 if all elements of \var{x} are true. Masked elements are treated
as true.
\end{funcdesc}
\begin{funcdesc}{sometrue}{x}
Returns 1 if any element of \var{x} is true. Masked elements are treated as
false.
\end{funcdesc}
\subsection{Special array operators}
\begin{funcdesc}{isarray}{x}
Return true \var{x} is a masked array.
\remark{What is about \numarray's?}
\end{funcdesc}
\begin{funcdesc}{rank}{x}
The number of dimensions in \var{x}.
\end{funcdesc}
\begin{funcdesc}{shape}{x}
Returns the shape of \var{x}, a tuple of array extents.
\end{funcdesc}
\begin{funcdesc}{resize}{x, shape}
Returns a new array with specified \var{shape}.
\end{funcdesc}
\begin{funcdesc}{reshape}{x, shape}
Returns a copy of \var{x} with the given new \var{shape}.
\end{funcdesc}
\begin{funcdesc}{ravel}{x}
Returns \var{x} as one-dimensional \class{MaskedArray}.
\end{funcdesc}
\begin{funcdesc}{concatenate}{(a0, ... an), axis=0}
Concatenates the arrays \code{a0, ... an} along the specified \var{axis}.
\end{funcdesc}
\begin{funcdesc}{repeat}{a, repeats, axis=0}
Repeat elements \var{i} of \var{a} \code{repeats[i]} times along \var{axis}.
\var{repeats} is a sequence of length \code{a.shape[axis]} telling how many
times to repeat each element.
\end{funcdesc}
\begin{funcdesc}{identity}{n}
Returns the identity matrix of shape \var{n} by \var{n}.
\end{funcdesc}
\begin{funcdesc}{indices}{dimensions, type=None}
Returns an array representing a grid of indices with row-only and
column-only variation.
\end{funcdesc}
\begin{funcdesc}{len}{x}
This is defined to be the length of the first dimension of \var{x}. This
definition, peculiar from the array point of view, is required by the way
Python implements slicing. Use \function{size} for the total length of
\var{x}.
\end{funcdesc}
\begin{funcdesc}{size}{x, axis=None}
This is the total size of \var{x}, or the length of a particular dimension
\var{axis} whose index is given. When axis is given the dimension of the
result is one less than the dimension of \var{x}.
\end{funcdesc}
\begin{funcdesc}{count}{x, axis=None}
Count the number of (non-masked) elements in the array, or in the array
along a certain \var{axis}. When \var{axis} is given the dimension of the
result is one less than the dimension of \var{x}.
\end{funcdesc}
\begin{funcdesc}{arange}{}
\end{funcdesc}
\begin{funcdesc}{arrayrange}{}
\end{funcdesc}
\begin{funcdesc}{diagonal}{}
\end{funcdesc}
\begin{funcdesc}{fromfunction}{}
\end{funcdesc}
\begin{funcdesc}{ones}{}
\end{funcdesc}
\begin{funcdesc}{zeros}{}
are the same as in numarray, but return masked arrays.
\end{funcdesc}
\begin{funcdesc}{sum}{}
\end{funcdesc}
\begin{funcdesc}{product}{}
are called the same way as count; the difference is that the result is the
sum or product of the unmasked element.
\end{funcdesc}
\begin{funcdesc}{average}{x, axis=0, weights=None, returned=0}
Compute the average value of the non-masked elements of \var{x} along the
selected \var{axis}. If \var{weights} is given, it must match the size and
shape of \var{x}, and the value returned is:
\begin{equation}
\text{average} = \frac{\sum{}weights_i\cdot{}x_i}{\sum{}weights_i}
\end{equation}
In computing these sums, elements that correspond to those that are masked
in \var{x} or \var{weights} are ignored. If successful a 2-tuple consisting
of the average and the sum of the weights is returned.
\end{funcdesc}
\begin{funcdesc}{allclose}{x, y, fill_value=1, rtol=1.e-5, atol=1.e-8}
Test whether or not arrays \var{x} and \var{y} are equal subject to the
given relative and absolute tolerances. If \var{fill_value} is 1, masked
values are considered equal, otherwise they are considered different. The
formula used for elements where both \var{x} and \var{y} have a valid value
is:
\begin{equation}
|x-y| < \var{atol} + \var{rtol} \cdot{} |y|
\end{equation}
This means essentially that both elements are small compared to \var{atol}
or their difference divided by their value is small compared to \var{rtol}.
\end{funcdesc}
\begin{funcdesc}{allequal}{x, y, fill_value=1}
This function is similar to \function{allclose}, except that exact equality
is demanded. \note{Consider the problems of floating-point representations
when using this function on non-integer numbers arrays.}
\end{funcdesc}
\begin{funcdesc}{take}{a, indices, axis=0}
Returns a selection of items from \var{a}. See the documentation of
\function{numarray.take} in section \ref{sec:array-functions:take}.
\end{funcdesc}
\begin{funcdesc}{transpose}{a, axes=None}
Performs a reordering of the axes depending on the tuple of indices
\var{axes}; the default is to reverse the order of the axes.
\end{funcdesc}
\begin{funcdesc}{put}{a, indices, values}
The opposite of \function{take}. The values of the array \var{a} at the
locations specified in \var{indices} are set to the corresponding value of
\var{values}. The array \var{a} must be a contiguous array. The argument
\var{indices} can be any integer sequence object with values suitable for
indexing into the flat form of \var{a}. The argument \var{values} must be
any sequence of values that can be converted to the typecode of \var{a}.
\begin{verbatim}
>>> x = arange(6)
>>> put(x, [2,4], [20,40])
>>> print x
[ 0 1 20 3 40 5 ]
\end{verbatim}
Note that the target array \var{a} is not required to be one-dimensional.
Since it is contiguous and stored in row-major order, the array indices can
be treated as indexing \var{a}s elements in storage order.
The wrinkle on this for masked arrays is that if the locations being set by
\function{put} are masked, the mask is cleared in those locations.
\end{funcdesc}
\begin{funcdesc}{choose}{condition, t}
This function has a result shaped like \var{condition}. \var{t} must be a
tuple. Each element of the tuple can be an array, a scalar, or the constant
element \constant{masked} (See section \ref{sec:numarray.ma:constant-masked}). Each
element of the result is the corresponding element of \code{t[i]} where
\var{condition} has the value \var{i}. The result is masked where
\var{condition} is masked or where the selected element is masked or the
selected element of \var{t} is the constant \constant{masked}.
\end{funcdesc}
\begin{funcdesc}{where}{condition, x, y}
Returns an array that is \code{filled(x)} where \var{condition} is true,
\code{filled(y)} where the condition is false. One of \var{x} or \var{y} can
be the constant element \constant{masked} (See section
\ref{sec:numarray.ma:constant-masked}). The result is masked where \var{condition} is
masked, where the element selected from \var{x} or \var{y} is masked, or
where \var{x} or \var{y} itself is the constant \constant{masked} and it is
selected.
\end{funcdesc}
\begin{funcdesc}{innerproduct}{a, b}
\end{funcdesc}
\begin{funcdesc}{dot}{a, b}
These functions work as in \module{\numarray}, but missing values don't
contribute. The result is always a masked array, possibly of length one,
because of the possibility that one or more entries in it may be invalid
since all the data contributing to that entry was invalid.
\end{funcdesc}
\begin{funcdesc}{outerproduct}{a, b}
Produces a masked array such that \code{result[i, j] = a[i] * b[j]}. The
result will be masked where \code{a[i]} or \code{b[j]} is masked.
\end{funcdesc}
\begin{funcdesc}{compress}{condition, x, dimension=-1}
Compresses out only those valid values where \var{condition} is true. Masked
values in \var{condition} are considered false.
\end{funcdesc}
\begin{funcdesc}{maximum}{x, y=None}
\end{funcdesc}
\begin{funcdesc}{minimum}{x, y=None}
Compute the maximum (minimum) valid values of \var{x} if \var{y} is
\constant{None}; with two arguments, they return the element-wise larger or
smaller of valid values, and mask the result where either \var{x} or \var{y}
is masked. If both arguments are scalars a scalar is returned.
\end{funcdesc}
\begin{funcdesc}{sort}{x, axis=-1, value=None}
Returns the array \var{x} sorted along the given axis, with masked values
treated as if they have a sort value of \var{value} but locations containing
\var{value} are masked in the result if \var{x} had a mask to start with.
\note{Thus if \var{x} contains \var{value} at a non-masked spot, but has
other spots masked, the result may not be what you want.}
\end{funcdesc}
\begin{funcdesc}{argsort}{x, axis=-1, fill_value=None}
This function is unusual in that it returns a \module{\numarray} array,
equal to \code{numarray.argsort(filled(x, fill_value), axis)}; this is an
array of indices for sorting along a given axis.
\end{funcdesc}
\subsection{Controlling the size of the string representations}
\label{sec:numarray.ma:contr-size-string}
\begin{funcdesc}{get_print_limit}{}
\end{funcdesc}
\begin{funcdesc}{set_print_limit}{n=0}
These functions are used to limit printing of large arrays; query and set
the limit for converting arrays using \function{str} or \function{repr}.
If an array is printed that is larger than this, the values are not printed;
rather you are informed of the type and size of the array. If \var{n} is
zero, the standard \module{\numarray} conversion functions are used.
When imported, \module{numarray.ma} sets this limit to 300, and the limit is also
made to apply to standard \module{\numarray} arrays as well.
\end{funcdesc}
\section{Helper classes}
\label{sec:numarray.ma:helper-classes}
\begin{quote}
This section discusses other classes defined in module numarray.ma.
\end{quote}
\begin{classdesc}{MAError}
This class inherits from Exception, used to raise exceptions in the
\module{numarray.ma} module. Other exceptions are possible, such as errors from the
underlying \module{\numarray} module.
\end{classdesc}
\subsection{The constant masked}
\label{sec:numarray.ma:constant-masked}
\index{numarray.ma!masked@\constant{masked} (constant)}
A constant named \index{numarray.ma!masked@\constant{masked}}\constant{masked} in
\module{numarray.ma} serves several purposes.
\begin{enumerate}
\item When a indexing operation on an \class{MaskedArray} instance returns a
scalar result, but the location indexed was masked, then \constant{masked}
is returned. For example, given a one-dimensional array \var{x} such that
\code{x.mask()[3]} is 1, then \code{x[3]} is \constant{masked}.
\item When \constant{masked} is assigned to elements of an array via indexing
or slicing, those elements become masked. So after \code{x[3] = masked},
\code{x[3]} is masked.
\item Some other operations that may return scalar values, such as
\function{average}, may return \constant{masked} if given only invalid data.
\item To test whether or not a variable is this element, use the \function{is}
or \function{is not} operator, not \code{==} or \code{!=}.
\item Operations involving the constant \constant{masked} may result in an
exception. In operations, \constant{masked} behaves as an integer array of
shape \code{()} with one masked element. For example, using \code{+} for
illustration,
\begin{itemize}
\item \constant{masked} + \constant{masked} is \constant{masked}.
\item \constant{masked} + numeric scalar or numeric scalar +
\constant{masked} is \constant{masked}.
\item \constant{masked} + array or array + \constant{masked} is a masked
array with all elements \constant{masked} if array is of a numeric type.
The same is true if array is a \module{\numarray} array.
\end{itemize}
\end{enumerate}
\subsection{The constant masked_print_option}
\index{numarray.ma!masked_print_option@\constant{masked_print_option} (constant)}
Another constant, \constant{masked_print_option} controls what happens when
masked arrays and the constant
\index{numarray.ma!masked@\constant{masked}}\constant{masked} are printed:
\begin{methoddesc}[masked_print_option]{display}{}
Returns a string that may be used to indicate those elements of an array
that are masked when the array is converted to a string, as happens with the
print statement.
\end{methoddesc}
\begin{methoddesc}[masked_print_option]{set_display}{string}
This functions can be used to set the string that is used to indicate those
elements of an array that are masked when the array is converted to a
string, as happens with the print statement.
\end{methoddesc}
\begin{methoddesc}[masked_print_option]{enable}{flag}
can be used to enable (\var{flag} = 1, default) the use of the display
string. If disabled (\var{flag} = 0), the conversion to string becomes
equivalent to \code{str(self.filled())}.
\end{methoddesc}
\begin{methoddesc}[masked_print_option]{enabled}{}
Returns the state of the display-enabling flag.
\end{methoddesc}
\paragraph*{Example of masked behavior}
\label{sec:numarray.ma:example-mask-behavior}
\begin{verbatim}
>>> from numarray.ma import *
>>> x=arange(5)
>>> x[3] = masked
>>> print x
[0 ,1 ,2 ,-- ,4 ,]
>>> print repr(x)
array(data =
[0,1,2,0,4,],
mask =
[0,0,0,1,0,],
fill_value=[0,])
>>> print x[3]
--
>>> print x[3] + 1.0
--
>>> print masked + x
[-- ,-- ,-- ,-- ,-- ,]
>>> masked_print_option.enable(0)
>>> print x
[0,1,2,0,4,]
>>> print x + masked
[0,0,0,0,0,]
>>> print filled(x+masked, -99)
[-99,-99,-99,-99,-99,]
\end{verbatim}
\begin{classdesc}{masked_unary_function}{f, fill=0, domain=None}
Given a \index{unary}unary array function \function{f}, give a function
which when applied to an argument \var{x} returns \function{f} applied to
the array \code{filled(x, fill)}, with a mask equal to
\code{mask_or(getmask(x), domain(x))}.
The argument domain therefore should be a callable object that returns true
where \var{x} is not in the domain of \function{f}.
\end{classdesc}
The following domains are also supplied as members of module \module{numarray.ma}:
\begin{classdesc}{domain_check_interval}{a, b)(x}
Returns true where \code{x < a or y > b}.
\end{classdesc}
\begin{classdesc}{domain_tan}{eps}{x}
This is true where \code{abs(cos (x)) < eps}, that is, a domain suitable for
the tangent function.
\end{classdesc}
\begin{classdesc}{domain_greater}{v)(x}
True where \code{x <= v}.
\end{classdesc}
\begin{classdesc}{domain_greater_equal}{v)(x}
True where x < v.
\end{classdesc}
\begin{classdesc}{masked_binary_function}{f, fillx=0, filly=0}
Given a binary array function \function{f}, \code{masked_binary_function(f,
fillx=0, filly=0)} defines a function whose value at \var{x} is
\code{f(filled(x, fillx), filled (y, filly))} with a resulting mask of
\code{mask_or(getmask (x), getmask(y))}. The values \var{fillx} and
\var{filly} must be chosen so that \code{(fillx, filly)} is in the domain of
\function{f}.
\end{classdesc}
In addition, an instance of
\index{numarray.ma!masked_binary_function@\class{masked_binary_function}}\class{masked_binary_function}
has two methods defined upon it:
\begin{methoddesc}[masked_binary_function]{reduce}{target, axis = 0}
\end{methoddesc}
\begin{methoddesc}[masked_binary_function]{accumulate}{target, axis = 0}
\end{methoddesc}
\begin{methoddesc}[masked_binary_function]{outer}{a, b}
These methods perform reduction, accumulation, and applying the function in
an outer-product-like manner, as discussed in the section
\ref{sec:ufuncs-have-special-methods}.
\end{methoddesc}
\begin{classdesc}{domained_binary_function}{}
This class exists to implement division-related operations. It is the same
as \class{masked_binary_function}, except that a new second argument is a
domain which is used to mask operations that would otherwise cause failure,
such as dividing by zero. The functions that are created from this class are
\function{divide}, \function{remainder} (\function{mod}), and
\function{fmod}.
\end{classdesc}
The following domains are available for use as the domain argument:
\begin{classdesc}{domain_safe_divide}{)(x, y}
True where \code{absolute(x)*divide_tolerance > absolute(y)}. As the
comments in the code say, \emph{better ideas welcome}. The constant
\index{numarray.ma!divide_tolerance@\constant{divide_tolerance}}\constant{divide_tolerance}
is set to \constant{1.e-35} in the source and can be changed by editing its
value in \file{MA.py} and reinstalling. This domain is used for the divide
operator.
\end{classdesc}
\section{Examples of Using numarray.ma}
\label{sec:numarray.ma:examples-using-ma}
\subsection{Data with a given value representing missing data}
\label{sec:numarray.ma:data-with-given-repr-miss-data}
Suppose we have read a one-dimensional list of elements named \var{x}. We also
know that if any of the values are \constant{1.e20}, they represent missing
data. We want to compute the average value of the data and the vector of
deviations from average.
\begin{verbatim}
>>> from numarray.ma import *
>>> x = array([0.,1.,2.,3.,4.])
>>> x[2] = 1.e20
>>> y = masked_values (x, 1.e20)
>>> print average(y)
2.0
>>> print y-average(y)
[ -2.00000000e+00, -1.00000000e+00, --, 1.00000000e+00,
2.00000000e+00,]
\end{verbatim}
\subsection{Filling in the missing data}
\label{sec:numarray.ma:filling-missing-data}
Suppose now that we wish to print that same data, but with the missing values
replaced by the average value.
\begin{verbatim}
>>> print filled (y, average(y))
\end{verbatim}
\subsection{Numerical operations}
\label{sec:numarray.ma:numerical-operations}
We can do numerical operations without worrying about missing values, dividing
by zero, square roots of negative numbers, etc.
\begin{verbatim}
>>> from numarray.ma import *
>>> x=array([1., -1., 3., 4., 5., 6.], mask=[0,0,0,0,1,0])
>>> y=array([1., 2., 0., 4., 5., 6.], mask=[0,0,0,0,0,1])
>>> print sqrt(x/y)
[ 1.00000000e+00, --, --, 1.00000000e+00, --, --,]
\end{verbatim}
Note that four values in the result are invalid: one from a negative square
root, one from a divide by zero, and two more where the two arrays \var{x} and
\var{y} had invalid data. Since the result was of a real type, the print
command printed \code{str(filled(sqrt (x/y)))}.
\subsection{Seeing the mask}
\label{sec:numarray.ma:seeing-mask}
There are various ways to see the mask. One is to print it directly, the other
is to convert to the \function{repr} representation, and a third is get the
mask itself. Use of \function{getmask} is more robust than \code{x.mask()},
since it will work (returning \constant{None}) if \var{x} is a
\module{\numarray} array or list.
\begin{verbatim}
>>> x = arange(10)
>>> x[3:5] = masked
>>> print x
[0 ,1 ,2 ,-- ,-- ,5 ,6 ,7 ,8 ,9 ,]
>>> print repr(x)
*** Masked array, mask present ***
Data:
[0 ,1 ,2 ,-- ,-- ,5 ,6 ,7 ,8 ,9 ,]
Mask (fill value [0,])
[0,0,0,1,1,0,0,0,0,0,]
>>> print getmask(x)
[0,0,0,1,1,0,0,0,0,0,]
\end{verbatim}
\subsection{Filling it your way}
\label{sec:numarray.ma:filling-it-your-way}
If we want to print the data with \constant{-1}'s where the elements are
masked, we use \function{filled}.
\begin{verbatim}
>>> print filled(z, -1)
[ 1.,-1.,-1., 1.,-1.,-1.,]
\end{verbatim}
\subsection{Ignoring extreme values}
\label{sec:numarray.ma:ignore-extreme-values}
Suppose we have an array \var{d} and we wish to compute the average of the
values in \var{d} but ignore any data outside the range -100. to 100.
\begin{verbatim}
v = masked_outside(d, -100., 100.)
print average(v)
\end{verbatim}
\subsection{Averaging an entire multidimensional array}
\label{sec:numarray.ma:averaging-an-entire}
The problem with averaging over an entire array is that the average function
only reduces one dimension at a time. So to average the entire array,
\function{ravel} it first.
\begin{verbatim}
>>> x
*** Masked array, no mask ***
Data:
[[ 0, 1, 2,]
[ 3, 4, 5,]
[ 6, 7, 8,]
[ 9,10,11,]]
>>> average(x)
*** Masked array, no mask ***
Data:
[ 4.5, 5.5, 6.5,]
>>> average(ravel(x))
5.5
\end{verbatim}
%% Local Variables:
%% mode: LaTeX
%% mode: auto-fill
%% fill-column: 79
%% indent-tabs-mode: nil
%% ispell-dictionary: "american"
%% reftex-fref-is-default: nil
%% TeX-auto-save: t
%% TeX-command-default: "pdfeLaTeX"
%% TeX-master: "numarray"
%% TeX-parse-self: t
%% End:
|