1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
|
\chapter{Ufuncs}
\label{cha:ufuncs}
\section{What are Ufuncs?}
\label{sec:what-are-ufuncs}
The operations on arrays that were mentioned in the previous section
(element-wise addition, multiplication, etc.) all share some features --- they
all follow similar rules for broadcasting, coercion and ``element-wise
operation''. Just as standard addition is available in Python through the add
function in the operator module, array operations are available through
callable objects as well. Thus, the following objects are available in the
numarray module:
\begin{table}[htbp]
\centering
\caption{Universal Functions, or ufuncs. The operators which invoke them
when applied to arrays are indicated in parentheses. The entries in slanted
typeface refer to unary ufuncs, while the others refer to binary ufuncs.}
\label{tab:ufuncs}
\begin{tabular}{llll}
add ($+$) & subtract ($-$) & multiply (*) & divide ($/$) \\
remainder (\%) & power (**) & \textsl{arccos} & \textsl{arccosh} \\
\textsl{arcsin} & \textsl{arcsinh} & \textsl{arctan} & \textsl{arctanh} \\
\textsl{cos} & \textsl{cosh} & \textsl{tan} & \textsl{tanh} \\
\textsl{log10} & \textsl{sin} & \textsl{sinh} & \textsl{sqrt} \\
\textsl{absolute (abs)} & \textsl{fabs} & \textsl{floor} & \textsl{ceil} \\
fmod & \textsl{exp} & \textsl{log} & \textsl{conjugate} \\
maximum & minimum \\
greater ($>$) & greater\_equal ($>=$) & equal ($==$) \\
less ($<$) & less\_equal ($<=$) & not\_equal ($!=$) \\
logical\_or & logical\_xor & logical\_not & logical\_and \\
bitwise\_or ($|$) & bitwise\_xor (\^{})
& bitwise\_not (\textasciitilde) & bitwise\_and (\&)
\\
rshift ($>>$) & lshift ($<<$)
\end{tabular}
\end{table}
\remark{Add a remark here on how numarray does (or will) handle 'true'
and 'floor' division, which can be activated in Python 2.2 with
\samp{from __future__ import division}?.
Note: with 'true' division, \samp{1/2 == 0.5} and not \samp{0}.}
All of these ufuncs can be used as functions. For example, to use
\function{add}, which is a binary ufunc (i.e.\ it takes two arguments), one can
do either of:
\begin{verbatim}
>>> a = arange(10)
>>> print add(a,a)
[ 0 2 4 6 8 10 12 14 16 18]
>>> print a + a
[ 0 2 4 6 8 10 12 14 16 18]
\end{verbatim}
In other words, the \code{+} operator on arrays performs exactly the same thing
as the \function{add} ufunc when operated on arrays. For a unary ufunc such as
\function{sin}, one can do, e.g.:
\begin{verbatim}
>>> a = arange(10)
>>> print sin(a)
[ 0. 0.84147096 0.90929741 0.14112 -0.7568025
-0.95892429 -0.27941549 0.65698659 0.98935825 0.41211849]
\end{verbatim}
A unary ufunc returns an array with the same shape as its argument array, but
with each element replaced by the application of the function to that element
(\code{sin(0)=0}, \code{sin(1)=0.84147098}, etc.).
There are three additional features of ufuncs which make them different from
standard Python functions. They can operate on any Python sequence in addition
to arrays; they can take an ``output'' argument; they have methods which are
themselves callable with arrays and sequences. Each of these will be described
in turn.
Ufuncs can operate on any Python sequence. Ufuncs have so far been described as
callable objects which take either one or two arrays as arguments (depending on
whether they are unary or binary). In fact, any Python sequence which can be
the input to the \function{array} constructor can be used. The return value
from ufuncs is always an array. Thus:
\begin{verbatim}
>>> add([1,2,3,4], (1,2,3,4))
array([2, 4, 6, 8])
\end{verbatim}
\subsection{Ufuncs can take output arguments}
\label{sec:ufuncs-can-take}
In many computations with large sets of numbers, arrays are often used only
once. For example, a computation on a large set of numbers could involve the
following step
\begin{verbatim}
dataset = dataset * 1.20
\end{verbatim}
This can also be written as the following using the Ufunc form:
\begin{verbatim}
dataset = multiply(dataset, 1.20)
\end{verbatim}
In both cases, a temporary array is created to store the results of the
computation before it is finally copied into \var{dataset}. It is
more efficient, both in terms of memory and computation time, to do an
``in-place'' operation. This can be done by specifying an existing array as
the place to store the result of the ufunc. In this example, one can
write:\footnote[1]{for Python-2.2.2 or later: `dataset *= 1.20' also works}
\begin{verbatim}
multiply(dataset, 1.20, dataset)
\end{verbatim}
This is not a step to take lightly, however. For example, the ``big and slow''
version (\code{dataset = dataset * 1.20}) and the ``small and fast'' version
above will yield different results in at least one case:
\begin{itemize}
\item If the type of the target array is not that which would normally be
computed, the operation will not coerce the array to the expected data type.
(The result is done in the expected data type, but coerced back to the
original array type.)
\item Example:
\begin{verbatim}
\>>> a=arange(5,type=Int32)
>>> print a[::-1]*1.7
[ 6.8 5.1 3.4 1.7 0. ]
>>> multiply(a[::-1],1.7,a)
>>> print a
[6 5 3 1 0]
>>> a *= 1.7
>>> print a
[0 1 3 5 6]
\end{verbatim}
\end{itemize}
The output array does not need to be the same variable as the input array. In
numarray, in contrast to Numeric, the output array may have any type (automatic
conversion is performed on the output).
\subsection{Ufuncs have special methods}
\label{sec:ufuncs-have-special-methods}
\begin{methoddesc}{reduce}{a, axis=0}
If you don't know about the \function{reduce} command in Python, review
section 5.1.3 of the Python Tutorial
(\url{http://www.python.org/doc/current/tut/}). Briefly,
\function{reduce} is most often used with two arguments, a callable object
(such as a function), and a sequence. It calls the callable object with the
first two elements of the sequence, then with the result of that operation
and the third element, and so on, returning at the end the successive
``reduction'' of the specified callable object over the sequence elements.
Similarly, the \method{reduce} method of ufuncs is called with a sequence as
an argument, and performs the reduction of that ufunc on the sequence. As an
example, adding all of the elements in a rank-1 array can be done with:
\begin{verbatim}
>>> a = array([1,2,3,4])
>>> print add.reduce(a) # with Python's reduce, same as reduce(add, a)
10
\end{verbatim}
When applied to arrays which are of rank greater than one, the reduction
proceeds by default along the first axis:
\begin{verbatim}
>>> b = array([[1,2,3,4],[6,7,8,9]])
>>> print b
[[1 2 3 4]
[6 7 8 9]]
>>> print add.reduce(b)
[ 7 9 11 13]
\end{verbatim}
A different axis of reduction can be specified with a second integer
argument:
\begin{verbatim}
>>> print b
[[1 2 3 4]
[6 7 8 9]]
>>> print add.reduce(b, axis=1)
[10 30]
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}{accumulate}{a}
The \method{accumulate} ufunc method is simular to \method{reduce}, except
that it returns an array containing the intermediate results of the
reduction:
\begin{verbatim}
>>> a = arange(10)
>>> print a
[0 1 2 3 4 5 6 7 8 9]
>>> print add.accumulate(a)
[ 0 1 3 6 10 15 21 28 36 45] # 0, 0+1, 0+1+2, 0+1+2+3, ... 0+...+9
>>> print add.reduce(a) # same as add.accumulate(a)[-1] w/o side effects on a
45
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}{outer}{a, b}
The third ufunc method is \method{outer}, which takes two arrays as
arguments and returns the ``outer ufunc'' of the two arguments. Thus the
\method{outer} method of the \function{multiply} ufunc, results in the outer
product. The \method{outer} method is only supported for binary methods.
\begin{verbatim}
>>> print a
[0 1 2 3 4]
>>> print b
[0 1 2 3]
>>> print add.outer(a,b)
[[0 1 2 3]
[1 2 3 4]
[2 3 4 5]
[3 4 5 6]
[4 5 6 7]]
>>> print multiply.outer(b,a)
[[ 0 0 0 0 0]
[ 0 1 2 3 4]
[ 0 2 4 6 8]
[ 0 3 6 9 12]]
>>> print power.outer(a,b)
[[ 1 0 0 0]
[ 1 1 1 1]
[ 1 2 4 8]
[ 1 3 9 27]
[ 1 4 16 64]]
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}{reduceat}{}
The reduceat method of Numeric has not been implemented in numarray.
\end{methoddesc}
\subsection{Ufuncs always return new arrays}
\label{sec:ufuncs-always-return}
Except when the output argument is used as described above, ufuncs always
return new arrays which do not share any data with the input arrays.
\section{Which are the Ufuncs?}
\label{sec:which-are-ufuncs}
Table \ref{tab:ufuncs} lists all the ufuncs. We will first discuss the
mathematical ufuncs, which perform operations very similar to the functions in
the \module{math} and \module{cmath} modules, albeit elementwise, on arrays.
Originally, numarray ufuncs came in two forms, unary and binary. More
recently (1.3) numarray has added support for ufuncs with up to 16 total
input or output parameters. These newer ufuncs are called N-ary ufuncs.
\subsection{Unary Mathematical Ufuncs}
\label{sec:unary-math-ufuncs}
Unary ufuncs take only one argument. The following ufuncs apply the
predictable functions on their single array arguments, one element at a time:
\function{arccos}, \function{arccosh}, \function{arcsin}, \function{arcsinh},
\function{arctan}, \function{arctanh}, \function{cos}, \function{cosh},
\function{exp}, \function{log}, \function{log10}, \function{sin},
\function{sinh}, \function{sqrt}, \function{tan}, \function{tanh},
\function{abs}, \function{fabs}, \function{floor}, \function{ceil},
\function{conjugate}. As an example:
\begin{verbatim}
>>> print x
[0 1 2 3 4]
>>> print cos(x)
[ 1. 0.54030231 -0.41614684 -0.9899925 -0.65364362]
>>> print arccos(cos(x))
[ 0. 1. 2. 3. 2.28318531]
# not a bug, but wraparound: 2*pi%4 is 2.28318531
\end{verbatim}
\subsection{Binary Mathematical Ufuncs}
\label{sec:binary-math-ufuncs}
These ufuncs take two arrays as arguments, and perform the specified
mathematical operation on them, one pair of elements at a time: \function{add},
\function{subtract}, \function{multiply}, \function{divide},
\function{remainder}, \function{power}, \function{fmod}.
\subsection{Logical and bitwise ufuncs}
\label{sec:logical-ufuncs}
The ``logical'' ufuncs also perform their operations on arrays or numbers
in elementwise fashion, just like the "mathematical" ones. Two are special
(\function{maximum} and \function{miminum}) in that they return arrays with
entries taken from their input arrays:
\begin{verbatim}
>>> print x
[0 1 2 3 4]
>>> print y
[ 2. 2.5 3. 3.5 4. ]
>>> print maximum(x, y)
[ 2. 2.5 3. 3.5 4. ]
>>> print minimum(x, y)
[ 0. 1. 2. 3. 4.]
\end{verbatim}
The others logical ufuncs return arrays of 0's or 1's and of type Bool:
\function{logical_and}, \function{logical_or}, \function{logical_xor},
\function{logical_not},
These are fairly
self-explanatory, especially with the associated symbols from the standard
Python version of the same operations in Table \ref{tab:ufuncs} above.
The bitwise ufuncs,
\function{bitwise_and}, \function{bitwise_or},
\function{bitwise_xor}, \function{bitwise_not},
\function{lshift}, \function{rshift},
on the other hand, only work with integer arrays (of any word size), and
will return integer arrays of the larger bit size of the two input arrays:
\begin{verbatim}
>>> x
array([7, 7, 0], type=Int8)
>>> y
array([4, 5, 6])
>>> x & y # bitwise_and(x,y)
array([4, 5, 0])
>>> x | y # bitwise_or(x,y)
array([7, 7, 6])
>>> x ^ y # bitwise_xor(x,y)
array([3, 2, 6])
>>> ~ x # bitwise_not(x)
array([-8, -8, -1], type=Int8)
\end{verbatim}
We discussed finding contents of arrays based on arrays' indices by using slice.
Often, especially when dealing with the result of computations or data
analysis, one needs to ``pick out'' parts of matrices based on the content of
those matrices. For example, it might be useful to find out which elements of
an array are negative, and which are positive. The comparison ufuncs are
designed for such operation. Assume an array with various positive
and negative numbers in it (for the sake of the example we'll generate it from
scratch):
\begin{verbatim}
>>> print a
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]]
>>> b = sin(a)
>>> print b
[[ 0. 0.84147098 0.90929743 0.14112001 -0.7568025 ]
[-0.95892427 -0.2794155 0.6569866 0.98935825 0.41211849]
[-0.54402111 -0.99999021 -0.53657292 0.42016704 0.99060736]
[ 0.65028784 -0.28790332 -0.96139749 -0.75098725 0.14987721]
[ 0.91294525 0.83665564 -0.00885131 -0.8462204 -0.90557836]]
>>> print greater(b, .3)
[[0 1 1 0 0]
[0 0 1 1 1]
[0 0 0 1 1]
[1 0 0 0 0]
[1 1 0 0 0]]
\end{verbatim}
\subsection{Comparisons}
\label{sec:comparisons}
The comparison functions \function{equal}, \function{not_equal},
\function{greater}, \function{greater_equal}, \function{less}, and
\function{less_equal} are invoked by the operators \code{==}, \code{!=},
\code{>}, \code{>=}, \code{<}, and \code{<=} respectively, but they can also be
called directly as functions. Continuing with the preceding example,
\begin{verbatim}
>>> print less_equal(b, 0)
[[1 0 0 0 1]
[1 1 0 0 0]
[1 1 1 0 0]
[0 1 1 1 0]
[0 0 1 1 1]]
\end{verbatim}
This last example has 1's where the corresponding elements are less than or
equal to 0, and 0's everywhere else.
The operators and the comparison functions are not exactly equivalent. To
compare an array a with an object b, if b can be converted to an array, the
result of the comparison is returned. Otherwise, zero is returned. This means
that comparing a list and comparing an array can return quite different
answers. Since the functional forms such as equal will try to make arrays from
their arguments, using equal can result in a different result than using
\code{==}.
\begin{verbatim}
>>> a = array([1, 2, 3])
>>> b = [1, 2, 3]
>>> print a == 2
[0 1 0]
>>> print b == 2
0 # (False since 2.3)
>>> print equal(a, 2)
[0 1 0]
>>> print equal(b, 2)
[0 1 0]
\end{verbatim}
\subsection{Ufunc shorthands}
\label{sec:ufunc-shorthands}
Numarray defines a few functions which correspond to popular ufunc methods:
for example, \function{add.reduce} is synonymous with the \function{sum}
utility function:
\begin{verbatim}
>>> a = arange(5) # [0 1 2 3 4]
>>> print sum(a) # 0 + 1 + 2 + 3 + 4
10
\end{verbatim}
Similarly, \function{cumsum} is equivalent to \function{add.accumulate} (for
``cumulative sum''), \function{product} to \function{multiply.reduce}, and
\function{cumproduct} to \function{multiply.accumulate}. Additional useful
``utility'' functions are \function{all} and \function{any}:
\begin{verbatim}
>>> a = array([0,1,2,3,4])
>>> print greater(a,0)
[0 1 1 1 1]
>>> all(greater(a,0))
0
>>> any(greater(a,0))
1
\end{verbatim}
\section{Writing your own ufuncs!}
This section describes a new process for defining your own universal functions.
It explains a new interface that enables the description of N-ary ufuncs, those
that use semi-arbitrary numbers \((<= 16)\) of inputs and outputs.
\subsection{Runtime components of a ufunc}
A numarray universal function maps from a Python function name to a set of C
functions. Ufuncs are polymorphic and figure out what to do in C when passed a
particular set of input parameter types. C functions, on the other hand, can
only be run on parameters which match their type signatures. The task of
defining a universal function is one of describing how different parameter
sequences are mapped from Python array types to C function signatures and back.
At runtime, there are three principle kinds of things used to define a
universal function.
\begin {enumerate}
\item Ufunc
The universal function is itself a callable Python object. Ufuncs organize a
collection of Cfuncs to be called based on the actual parameter types seen at
runtime. The same Ufunc is typically associated with several Cfuncs each of
which handles a unique Ufunc type signature. Because a Ufunc typically has
more than one C func, it can also be implemented using more than one library
function.
\item Library function
A pre-existing function written in C or Fortran which will ultimately be called
for each element of the ufunc parameter arrays.
\item Cfunc
Cfuncs are binding objects that map C library functions safely into Python.
It's the job of a Cfunc to interpret typeless pointers corresponding to the
parameter arrays as particular C data types being passed down from the ufunc.
Further, the Cfunc casts array elements from the input type to the Libraray
function parameter type. This process lets the ufunc implementer describe the
ufunc type signatures which will be processed most efficiently by the
underlying Library function by enabling per-call element-by-element type casts.
Ufunc calling signatures which are not represented directly by a Cfunc result
in blockwise coercion to the closest matching Cfunc, which is slower.
\end {enumerate}
\subsection{Source components of a ufunc}
There are 4 source components required to define numarray ufuncs, one of which
is hand written, two are generated, and the last is assumed to be pre-existing:
\begin {enumerate}
\item Code generation script
The primary source component for defining new universal functions is a Python
script used to generate the other components. For a standalone set of
functions, putting the code generation directives in setup.py can be done as in
the example numarray/Examples/ufunc/setup_airy.py. The code generation script
only executes at install time.
\item Extension module
A private extension module is generated which contains a collection of Cfuncs
for the package being created. The extension module contains a dictionary
mapping from ufuncs/types to Cfuncs.
\item Ufunc init file
A Python script used at ufunc import time is required to construct Ufunc
objects from Cfuncs. This code is boilerplate created with the code generation
directive \function{make_stub()}.
\item Library functions
The C functions which are ultimately called by a Ufunc need to be defined
somewhere, typically in a third party C or Fortran library which is linked
to the Extension module.
\end{enumerate}
\subsection{Ufunc code generation}
There are several code generation directives provided by package
numarray.codegenerator which are called at installation time to generate the
Cfunc extension module and Ufunc init file.
\begin{funcdesc}{UfuncModule}{module_name}
The \class{UfuncModule} constructor creates a module object which collects code
which is later output to form the Cfunc extension module. The name passed to
the constructor defines the name of the Python extension module, not the source
code.
\begin{verbatim}
m = UfuncModule("_na_special")
\end{verbatim}
\end{funcdesc}
\begin{methoddesc}{add_code}{code_string}
The \method{add_code()} method of a \class{UfuncModule} object is used to add
arbitrary code to the module at the point that \method{add_code()} is
called. Here it includes a header file used to define prototypes for the C
library functions which this extension will ultimately call.
\begin{verbatim}
m.add_code('#include "airy.h"')
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}{add_nary_ufunc}{ufunc_name, c_name,
ufunc_signatures, c_signature, forms=None}
The \method{add_nary_ufunc()} method declares a Ufunc and relates it to one
library function and a collection of Cfunc bindings for it. The
\var{signatures} parameter defines which ufunc type signatures receive Cfunc
bindings. Input types which don't match those signature are blockwise coerced
to the best matching signature. \method{add_nary_ufunc()} can be called for
the same Ufunc name more than once and can thus be used to associate multiple
library functions with the same Ufunc.
\begin{verbatim}
m.add_nary_ufunc(ufunc_name = "airy",
c_function = "airy",
signatures =["dxdddd",
"fxffff"],
c_signature = "dxdddd")
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}{generate}{source_filename}
The \method{generate()} method asks the \class{UfuncModule} object to emit the
code for an extension module to the specified \var{source_filename}.
\begin{verbatim}
m.generate("Src/_na_specialmodule.c")
\end{verbatim}
\end{methoddesc}
\begin{funcdesc}{make_stub}{stub_filename, cfunc_extension, add_code=None}
The \function{make_stub()} function is used to generate the boilerplate Python
code which constructs universal functions from a Cfunc extension module at
import time. \function{make_stub()} accepts a \var{add_code} parameter which
should be a string containing any additional Python code to be injected into
the stub module. Here \function{make_stub()} creates the init file
``Lib/__init__.py'' associated with the Cfunc extension ``_na_special'' and
includes some extra Python code to define the \function{plot_airy()} function.
\begin{verbatim}
extra_stub_code = '''
import matplotlib.pylab as mpl
def plot_airy(start=-10,stop=10,step=0.1,which=1):
a = mpl.arange(start, stop, step)
mpl.plot(a, airy(a)[which])
b = 1.j*a + a
ba = airy(b)[which]
h = mpl.figure(2)
mpl.plot(b.real, ba.real)
i = mpl.figure(3)
mpl.plot(b.imag, ba.imag)
mpl.show()
'''
make_stub("Lib/__init__", "_na_special", add_code=extra_stub_code)
\end{verbatim}
\end{funcdesc}
\subsection{Type signatures and signature ordering}
Type signatures are described using the single character typecodes from
Numeric. Since the type signature and form of a Cfunc need to be encoded in
its name for later identification, it must be brief.
\begin{verbatim}
typesignature ::= <inputtypes> + ``x'' + <outputtypes>
inputtypes ::= [<typecode>]+
outputtypes ::= [<typecode>]+
typecode ::= "B" | "1" | "b" | "s" | "w" | "i" | "u" |
"N" | "U" | "f" | "d" | "F" | "D"
\end{verbatim}
For example, the type signature corresponding to one Int32 input and one Int16
output is "ixs".
A type signature is a sequence of ordered types. One signature can be compared
to another by comparing corresponding elements, in left to right order.
Individual elements are ranked using the order from the previous section. A
ufunc maintains its associated Cfuncs as a sorted sequence and selects the
first Cfunc which is \(>=\) the input type signature; this defines the notion
of ``best matching''.
\subsection{Forms}
The \method{add_nary_ufunc()} method has a parameter \var{forms} which enables
generation of code with some extra properties. It specifies the list of
function forms for which dedicated code will be generated. If you don't
specify \var{forms}, it defaults to a (list of a) single form which specifies
that all inputs and outputs corresponding to the type signature are vectors.
Input vectors are passed by value, output vectors are passed by reference. The
default form implies that the library function return value, if there is one,
is ignored. The following Python code shows the default form:
\begin{verbatim}
["v"*n_inputs + "x" + "v"*n_outputs]
\end{verbatim}
Forms are denoted using a syntax very similar to, and typically symmetric with,
type signatures.
\begin{verbatim}
form ::= <inputs> "x" <outputs>
inputs ::= ["v"|"s"]*
outputs ::= ["f"]?["v"]* | "A" | "R"
The form character values have different meanings than for type
signatures:
'v' : vector, an array of input or output values
's' : scalar, a non-array input value
'f' : function, the c_function returns a value
'R' : reduce, this binary ufunc needs a reduction method
'A' : accumulate this binary ufunc needs an accumulate method
'x' : separator delineates inputs from outputs
\end{verbatim}
So, a form consists of some input codes followed by a lower case "x" followed
by some output codes.
The form for a C function which takes 4 input values, the last of which is
assumed to be a scalar, returns one value, and fills in 2 additional output
values is: "vvvsxfvv".
Using "s" to designate scalar parameters is a useful performance
optimization for cases where it is known that only a single value is
passed in from Python to be used in all calls to the c function. This
prevents the blockwise expansion of the scalar value into a vector.
Use "f" to specify that the C function return value should be kept; it must
always be the first output and will therefore appear as the first element of
the result tuple.
For ufuncs of two input parameters (binary ufuncs), two additional form
characters are possible: A (accumulate) and R (reduce). Each of these
characters constitutes the *entire* ufunc form, so the form is denoted "R" or
"A". For these kinds of cfuncs, the type signature always reads \code{<t>x<t>}
where \code{<t>} is one of the type characters.
One reason for all these codes is so that the many Cfuncs generated for Ufuncs
can be easily named. The name for the Cfunc which implements \function{add()}
for two Int32 inputs and one Int32 output and where all parameters are arrays
is: "add_iixi_vvxv". The cfunc name for \method{add.reduce()} with two integer
parameters would be written as "add_ixi_R" and for \method{add.accumulate()}
as "add_ixi_A".
The set of Cfuncs generated is based on the signatures \emph{crossed} with the
forms. Multiple calls to \method{add_nary_ufunc()} can be used the reduce the
effects of signature/form crossing.
\newpage
\subsection{Ufunc Generation Example}
This section includes code from Examples/ufunc/setup_airy.py in the numarray
source distribution to illustrate how to create a package which defines your
own universal functions.
This script eventually generates two files: _na_airymodule.c and
__init__.py. The former defines an extension module which creates
numarray cfuncs, c helpers for the numarray airy() ufunc. The latter
file includes Python code which automatically constructs numarray
universal functions (ufuncs) from the cfuncs in _na_airymodule.c.
\begin{verbatim}
import distutils, os, sys
from distutils.core import setup
from numarray.codegenerator import UfuncModule, make_stub
from numarray.numarrayext import NumarrayExtension
m = UfuncModule("_na_special")
m.add_code('#include "airy.h"')
m.add_nary_ufunc(ufunc_name = "airy",
c_function = "airy",
signatures =["dxdddd",
"fxffff"],
c_signature = "dxdddd")
m.add_nary_ufunc(ufunc_name = "airy",
c_function ="cairy_fake",
signatures =["DxDDDD",
"FxFFFF"],
c_signature = "DxDDDD")
m.generate("Src/_na_specialmodule.c")
\end{verbatim}
\begin{verbatim}
extra_stub_code = '''
def plot_airy(start=-10,stop=10,step=0.1,which=1):
import matplotlib.pylab as mpl;
a = mpl.arange(start, stop, step);
mpl.plot(a, airy(a)[which]);
b = 1.j*a + a
ba = airy(b)[which]
h = mpl.figure(2)
mpl.plot(b.real, ba.real)
i = mpl.figure(3)
mpl.plot(b.imag, ba.imag)
mpl.show()
'''
make_stub("Lib/__init__", "_na_special",
add_code=extra_stub_code)
dist = setup(name = "na_special",
version = "0.1",
maintainer = "Todd Miller",
maintainer_email = "jmiller@stsci.edu",
description = "airy() universal function for numarray",
url = "http://www.scipy.org/",
packages = ["numarray.special"],
package_dir = { "numarray.special":"Lib" },
ext_modules = [ NumarrayExtension( 'numarray.special._na_special',
['Src/_na_specialmodule.c',
'Src/airy.c',
'Src/const.c',
'Src/polevl.c']
)
]
)
\end{verbatim}
Additional explanatory text is available in
numarray/Examples/ufunc/setup_airy.py. Scripts used to extract
numarray ufunc specs from the existing Numeric ufunc definitions
in scipy.special are in numarray/Examples/ufunc/RipNumeric as an
example of how to convert existing Numeric code to numarray.
%% Local Variables:
%% mode: LaTeX
%% mode: auto-fill
%% fill-column: 79
%% indent-tabs-mode: nil
%% ispell-dictionary: "american"
%% reftex-fref-is-default: nil
%% TeX-auto-save: t
%% TeX-command-default: "pdfeLaTeX"
%% TeX-master: "numarray"
%% TeX-parse-self: t
%% End:
|