File: convcode.py

package info (click to toggle)
python-numarray 1.5.2-4
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 8,668 kB
  • ctags: 11,384
  • sloc: ansic: 113,864; python: 22,422; makefile: 197; sh: 11
file content (216 lines) | stat: -rw-r--r-- 7,622 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""This module does code generation for numarray's type converters.

WARNING: This module exists solely as a mechanism to generate a
portion of numarray and is not intended to provide any
post-installation functionality.  
"""

from basecode import CodeGenerator, template, hasUInt64, hasFloat128
from basecode import _ADDCFUNC_TEMPLATE     

_numarray_to_numarray = {
  ("Complex", "Complex"): "tout->r = tin->r; tout->i = tin->i;",
  ("Complex", "default"): "*tout = <desttypecast>(tin->r);",
  ("default", "Complex"): "tout->r = *tin; tout->i = 0;",
  ("default", "default"): "*tout = <desttypecast>(*tin);"
}

def _complex_type(t):
  if t in ["Complex32", "Complex64"]:
    return "Complex"
  else:
    return "default"

def numarray_to_numarray(t1, t2):
  return _numarray_to_numarray[_complex_type(t1), _complex_type(t2)]
    

AS_PyVALUE_TEMPLATE = \
'''
static PyObject *<typename>asPyValue(void *data) {
  return Py_BuildValue(<pybuildchar>, <pycast>*((<typename> *) data));
}

SELF_CHECKED_CFUNC_DESCR(<typename>asPyValue, CFUNC_AS_PY_VALUE);
'''

COMPLEX_AS_PyVALUE_TEMPLATE = \
'''
static PyObject *<typename>asPyValue(void *data) {
  return PyComplex_FromDoubles(((<typename> *) data)->r, 
                               ((<typename> *) data)->i);
}

SELF_CHECKED_CFUNC_DESCR(<typename>asPyValue, CFUNC_AS_PY_VALUE);
'''

# From_PyVALUE uses a (relatively) backwards convention for return status.
#   0 --> failure.  non-zero --> success.  This is actually my preferred
#   style as well, but *not* what the rest of numarray does.
#   Most ufuncs use the convention -1 for error and 0 for success.
FROM_PyVALUE_TEMPLATE = \
'''
static int <typename>fromPyValue(PyObject *value, void *dataptr) {
    <typename> *data = (<typename> *) dataptr;
    if (!PyNumber_Check(value))
        return 0;
    else {
        if (PyLong_Check(value)) {
            *data = <typecast>(PyLong_AsLongLong(value));
        } else if (PyInt_Check(value)) {
            *data = <typecast>(PyInt_AsLong(value));
        } else if (PyFloat_Check(value)) {
            *data = <typecast>(PyFloat_AsDouble(value));
        } else if (PyComplex_Check(value)) {
           *data = <typecast>(PyComplex_RealAsDouble(value));
        } else {
            return 0;
        }
        if (PyErr_Occurred())
           return 0;
        else
           return 1;
    }
}

SELF_CHECKED_CFUNC_DESCR(<typename>fromPyValue, CFUNC_FROM_PY_VALUE);
'''

COMPLEX_FROM_PyVALUE_TEMPLATE = \
'''
static int <typename>fromPyValue(PyObject *value, void *dataptr) {
    <typename> *data = (<typename> *) dataptr;
    if (!PyNumber_Check(value))
        return 0;
    else {
        if (PyLong_Check(value)) {
            data->r = PyLong_AsLong(value);
            data->i = 0;
        } else if (PyInt_Check(value)) {
            data->r = PyInt_AsLong(value);
            data->i = 0;
        } else if (PyFloat_Check(value)) {
            data->r = PyFloat_AsDouble(value);
            data->i = 0;
        } else if (PyComplex_Check(value)) {
           data->r = PyComplex_RealAsDouble(value);
           data->i = PyComplex_ImagAsDouble(value);
        } else {
            return 0;
        }
        if (PyErr_Occurred())
           return 0;
        else
           return 1;
    }
}

SELF_CHECKED_CFUNC_DESCR(<typename>fromPyValue, CFUNC_FROM_PY_VALUE);
'''

CONVERSION_TEMPLATE = \
'''
static int <typename>as<desttypename>(long niter, long ninargs, long noutargs, void **buffers, long *bsizes) {
    long i;
    <typename>     *tin  = (<typename> *)     buffers[0];
    <desttypename> *tout = (<desttypename> *) buffers[1];
    BEGIN_THREADS
    for (i=0; i<niter; i++, tout++, tin++) {
        <numarray_to_numarray>
    }
    END_THREADS
    return 0;
}

UFUNC_DESCR2(<typename>as<desttypename>, sizeof(<typename>), sizeof(<desttypename>));
'''

# ============================================================================
#          IMPORTANT:  no <>-sugared strings below this point

# translate <var> --> %(var)s in templates seen *so far*
template.sugar_dict(globals())  

# ============================================================================
    
#*********************************************************************#
#                   data lists for type conversion                    #
#*********************************************************************#

# These are used by the code to generate dictionaries with the keys
# defined in tdictfields and the corresponding values in typeconfig
# list items. There will be one dictionary for each element in
# typeconfig. It is done this way to make the table more readable
# and easier to edit.

typeconfig = [
    ["Bool",   "(Bool) isNonZERO",   "PY_BOOL_CHAR",   ""],
    ["Int8",   "(Int8)",             "PY_INT8_CHAR",   ""],
    ["Int16",  "(Int16)",            "PY_INT16_CHAR",  ""],
    ["Int32",  "(Int32)",            "PY_INT32_CHAR",  ""],
    ["UInt32",  "(UInt32)",          "PY_UINT32_CHAR",  ""],
    ["UInt8",  "(UInt8)",            "PY_UINT8_CHAR",  "(Int16)"],
    ["UInt16", "(UInt16)",           "PY_UINT16_CHAR", "(Int32)"],
    ["Float32","(Float32)",          "PY_FLOAT32_CHAR",""],
    ["Float64","(Float64)",          "PY_FLOAT64_CHAR",""],
    ["Complex32", "NUM_TO_COMPLEX",  "PY_COMPLEX32_CHAR",""],
    ["Complex64", "NUM_TO_COMPLEX",  "PY_COMPLEX64_CHAR",""],
    ]

typeconfig.append(["Int64", "(Int64)", "PY_LONG_CHAR", ""])
if hasUInt64():
  typeconfig.append(["UInt64", "(UInt64)", "PY_LONG_CHAR", ""])

if hasFloat128():
  typeconfig.append(["Float128", "(Float128)", "PY_FLOAT128_CHAR", ""])
  typeconfig.append(["Complex128", "NUM_TO_COMPLEX", "PY_COMPLEX128_CHAR", ""])

class ConvParams:
    def __init__(self, typename, typecast, pybuildchar, pycast):
        self.typename = typename
        self.typecast = typecast
        self.pybuildchar = pybuildchar
        self.pycast = pycast

class ConvCodeGenerator(CodeGenerator):
    def __init__(self, *components):
        CodeGenerator.__init__(self, *components)
        self.module = "_conv"
        self.qualified_module = "numarray._conv"
        
    def addcfunc(self, type, name):
        CodeGenerator.addcfunc(self, type+name, key=repr((type, name)))

    def gen_body(self):
        """Generates the repetitive sections of code for conversions"""

        # Iterate over the "from" datatype.
        for cfg1 in typeconfig:
            t1 = apply(ConvParams, cfg1)
            if t1.typename in ["Complex32","Complex64"]:
              frompy = COMPLEX_FROM_PyVALUE_TEMPLATE
              aspy = COMPLEX_AS_PyVALUE_TEMPLATE
            else:
              frompy = FROM_PyVALUE_TEMPLATE
              aspy = AS_PyVALUE_TEMPLATE
            self.codelist.append((self.separator + aspy + frompy) % \
                                 t1.__dict__)
            self.addcfunc(t1.typename, "asPyValue")
            self.addcfunc(t1.typename, "fromPyValue")
            
            # Iterate over the "to" datatype
            for cfg2 in typeconfig:
                t2 = apply(ConvParams, cfg2)
                if cfg1 == cfg2:
                    continue
                t1.desttypename = t2.typename
                t1.desttypecast = t2.typecast
                t1.numarray_to_numarray = numarray_to_numarray(t1.typename, t2.typename) % t1.__dict__
                self.codelist.append(CONVERSION_TEMPLATE % t1.__dict__)
                
                typetup = repr((t1.typename, t2.typename))
                name = t1.typename + "as" + t2.typename
                self.funclist.append(_ADDCFUNC_TEMPLATE % (typetup, name))

generate_conv_code  = ConvCodeGenerator()