1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
""" This module provides access to higher level functions and
constants for ieee special values such as Not a Number (nan) and
infinity (inf).
>>> from numarray import *
The special values are designated using lower case as follows:
>> inf
inf
>> plus_inf
inf
>> minus_inf
-inf
>> nan
nan
>> plus_zero
0.0
>> minus_zero
-0.0
Note that the representation of IEEE special values is platform
dependent so your Python might, for instance, say 'Infinity' rather
than 'inf'. Below, inf is seen to arise as the result of floating
point division by 0 and nan is seen to arise from 0 divided by 0:
>>> a = arange(2.0)
>>> b = a/0
Warning: Encountered invalid numeric result(s) in divide
Warning: Encountered divide by zero(s) in divide
Here are the results for linux, but the repr problem causes this
example to fail for windows:
>> b
array([ nan, inf])
A curious property of nan is that it does not compare to *itself* as
equal (results also from linux):
>> b == nan
array([0, 0], type=Bool)
The isnan(), isinf(), and isfinite() functions return boolean arrays
which have the value True where the corresponding predicate holds.
These functions detect bit ranges and are therefore more robust than
simple equality checks.
>>> isnan(b)
array([1, 0], type=Bool)
>>> isinf(b)
array([0, 1], type=Bool)
>>> isfinite(b)
array([0, 0], type=Bool)
Array based indexing provides a convenient way to replace special values:
>>> b[isnan(b)] = 999
>>> b[isinf(b)] = 5
>>> b
array([ 999., 5.])
Here's an easy approach for compressing your data arrays to remove
NaNs:
>>> x, y = arange(10.), arange(10.); x[5] = nan; y[6] = nan;
>>> keep = ~isnan(x) & ~isnan(y)
>>> x[keep]
array([ 0., 1., 2., 3., 4., 7., 8., 9.])
>>> y[keep]
array([ 0., 1., 2., 3., 4., 7., 8., 9.])
=======================================================================
# >>> inf # the repr() of inf may vary from platform to platform
# inf
# >>> nan # the repr() of nan may vary from platform to platform
# nan
# Create a couple inf values in 4,4 array
>>> a=arange(16.0, shape=(4,4))
>>> a[2,3] = 0.0
>>> b = 1/a
Warning: Encountered divide by zero(s) in divide
# Locate the positions of the inf values
>>> getinf(b)
(array([0, 2]), array([0, 3]))
# Change the inf values to something else
>>> isinf(b)
array([[1, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 0, 0]], type=Bool)
>>> isinf(inf)
1
>>> isinf(1)
0
>>> isinf(nan)
0
>>> isfinite(inf)
0
>>> isfinite(1)
1
>>> isfinite(nan)
0
>>> isnan(inf)
0
>>> isnan(1)
0
>>> isnan(nan)
1
>>> isfinite(b)
array([[0, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 0],
[1, 1, 1, 1]], type=Bool)
>>> a[getinf(b)] = 999
>>> a
array([[ 999., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 999.],
[ 12., 13., 14., 15.]])
# Set a bunch of locations to a special value
>>> a[0,1] = nan; a[1,2] = nan; a[2,3] = nan
>>> getnan(a)
(array([0, 1, 2]), array([1, 2, 3]))
IEEE Special Value support 32-bit
>>> import ieeespecial
>>> a = arange(5.0, type=Float32)
>>> b = (a*a)/a
Warning: Encountered invalid numeric result(s) in divide
>>> ieeemask(b, NAN)
array([1, 0, 0, 0, 0], type=Bool)
>>> ieeemask(b, NUMBER)
array([0, 1, 1, 1, 1], type=Bool)
>>> index(b, NAN)
(array([0]),)
>>> getnan(b)
(array([0]),)
>>> setnan(b, 42.0)
>>> b[0]
42.0
>>> a = arange(1.0, 6.0, type=Float32)
>>> b = a/zeros((5,), type=Float32)
Warning: Encountered divide by zero(s) in divide
>>> ieeemask(b, POS_INFINITY)
array([1, 1, 1, 1, 1], type=Bool)
>>> ieeemask(b, NEG_INFINITY)
array([0, 0, 0, 0, 0], type=Bool)
>>> ieeemask(b, INFINITY)
array([1, 1, 1, 1, 1], type=Bool)
>>> b = (-a)/zeros((5,), type=Float32)
Warning: Encountered divide by zero(s) in divide
>>> ieeemask(b, POS_INFINITY)
array([0, 0, 0, 0, 0], type=Bool)
>>> ieeemask(b, NEG_INFINITY)
array([1, 1, 1, 1, 1], type=Bool)
>>> ieeemask(b, INFINITY)
array([1, 1, 1, 1, 1], type=Bool)
>>> ieeemask(b, NUMBER)
array([0, 0, 0, 0, 0], type=Bool)
>>> ieeemask(array([0], type=Float32), POS_ZERO)
array([1], type=Bool)
>>> ieeemask(array([0], type=Float32), NEG_ZERO)
array([0], type=Bool)
>>> ieeemask(array([0], type=Float32), ZERO)
array([1], type=Bool)
>>> neginf = (array([-1],type=Float32)/array([0], type=Float32))
Warning: Encountered divide by zero(s) in divide
>>> negzero = array([1], type=Float32)/neginf
>>> ieeemask(negzero, POS_ZERO)
array([0], type=Bool)
>>> ieeemask(negzero, NEG_ZERO)
array([1], type=Bool)
>>> ieeemask(array([-0], type=Float32), ZERO)
array([1], type=Bool)
IEEE Special Value support 64-bit
>>> import ieeespecial
>>> a = arange(5.0, type=Float64)
>>> b = (a*a)/a
Warning: Encountered invalid numeric result(s) in divide
>>> ieeemask(b, NAN)
array([1, 0, 0, 0, 0], type=Bool)
>>> ieeemask(b, NUMBER)
array([0, 1, 1, 1, 1], type=Bool)
>>> index(b, NAN)
(array([0]),)
>>> getnan(b)
(array([0]),)
>>> setnan(b, 42.0)
>>> b[0]
42.0
>>> a = arange(1.0, 6.0, type=Float64)
>>> b = a/zeros((5,), type=Float64)
Warning: Encountered divide by zero(s) in divide
>>> ieeemask(b, POS_INFINITY)
array([1, 1, 1, 1, 1], type=Bool)
>>> ieeemask(b, NEG_INFINITY)
array([0, 0, 0, 0, 0], type=Bool)
>>> ieeemask(b, INFINITY)
array([1, 1, 1, 1, 1], type=Bool)
>>> b = (-a)/zeros((5,), type=Float64)
Warning: Encountered divide by zero(s) in divide
>>> ieeemask(b, POS_INFINITY)
array([0, 0, 0, 0, 0], type=Bool)
>>> ieeemask(b, NEG_INFINITY)
array([1, 1, 1, 1, 1], type=Bool)
>>> ieeemask(b, INFINITY)
array([1, 1, 1, 1, 1], type=Bool)
>>> ieeemask(b, NUMBER)
array([0, 0, 0, 0, 0], type=Bool)
>>> ieeemask(array([0], type=Float64), POS_ZERO)
array([1], type=Bool)
>>> ieeemask(array([0], type=Float64), NEG_ZERO)
array([0], type=Bool)
>>> ieeemask(array([0], type=Float64), ZERO)
array([1], type=Bool)
>>> neginf = (array([-1],type=Float64)/array([0], type=Float64))
Warning: Encountered divide by zero(s) in divide
>>> negzero = array([1], type=Float64)/neginf
>>> ieeemask(negzero, POS_ZERO)
array([0], type=Bool)
>>> ieeemask(negzero, NEG_ZERO)
array([1], type=Bool)
>>> ieeemask(array([-0], type=Float64), ZERO)
array([1], type=Bool)
"""
import numarrayall as _na
from numarray.ufunc import isnan
# Define *ieee special values*
_na.Error.pushMode(all="ignore")
plus_inf = inf = (_na.array(1.0)/_na.array(0.0))[()]
minus_inf = (_na.array(-1.0)/_na.array(0.0))[()]
nan = (_na.array(0.0)/_na.array(0.0))[()]
plus_zero = zero = 0.0
minus_zero = (_na.array(-1.0)*0.0)[()]
_na.Error.popMode()
# Define *mask condition bits*
class _IeeeMaskBit(_na.NumArray):
pass
def _BIT(x):
a = _na.array((1 << x), type=_na.Int32)
a.__class__ = _IeeeMaskBit
return a
POS_QUIET_NAN = _BIT(0)
NEG_QUIET_NAN = _BIT(1)
POS_SIGNAL_NAN = _BIT(2)
NEG_SIGNAL_NAN = _BIT(3)
POS_INFINITY = _BIT(4)
NEG_INFINITY = _BIT(5)
POS_DENORMALIZED = _BIT(6)
NEG_DENORMALIZED = _BIT(7)
POS_NORMALIZED = _BIT(8)
NEG_NORMALIZED = _BIT(9)
POS_ZERO = _BIT(10)
NEG_ZERO = _BIT(11)
INDETERM = _BIT(12)
BUG = _BIT(15)
NAN = POS_QUIET_NAN | NEG_QUIET_NAN | POS_SIGNAL_NAN | NEG_SIGNAL_NAN | INDETERM
INFINITY = POS_INFINITY | NEG_INFINITY
SPECIAL = NAN | INFINITY
NORMALIZED = POS_NORMALIZED | NEG_NORMALIZED
DENORMALIZED = POS_DENORMALIZED | NEG_DENORMALIZED
ZERO = POS_ZERO | NEG_ZERO
NUMBER = NORMALIZED | DENORMALIZED | ZERO
FINITE = NUMBER
def mask(a, m):
"""mask(a, m) returns the values of 'a' satisfying category 'm'.
mask does a parallel check for values which are not classifyable
by the categorization code, raising a RuntimeError exception if
any are found.
"""
a = _na.asarray(a)
if isinstance(a.type(), _na.IntegralType):
a = a.astype('Float64')
if isinstance(a.type(), _na.ComplexType):
f = _na.ieeemask(a.real, m) | _na.ieeemask(a.imag, m)
g = _na.ieeemask(a.real, BUG) | _na.ieeemask(a.imag, BUG)
else:
f = _na.ieeemask(a, m)
g = _na.ieeemask(a, BUG)
if _na.bitwise_or.reduce(_na.ravel(g)) != 0:
raise RuntimeError("Unclassifyable floating point values.")
if f.rank == 0:
f = f[()]
return f
def index(a, msk):
"""index returns the tuple of indices where the values satisfy 'mask'"""
return _na.nonzero(mask(a, msk))
def getinf(a):
"""getinf returns a tuple of indices of 'a' where the values are infinite."""
return index(a, INFINITY)
def setinf(a, value):
"""setinf sets elements of 'a' which are infinite to 'value' instead.
DEPRECATED: use 'a[getinf(a)] = value' instead.
"""
_na.put(a, getinf(a), value)
def isinf(a):
"""Idenitfies elements of 'a' which are infinity.
"""
return mask(a, INFINITY)
def getposinf(a):
"""getposinf returns a tuple of indices of 'a' where the values are +inf."""
return index(a, POS_INFINITY)
def getneginf(a):
"""getneginf returns a tuple of indices of 'a' where the values are -inf."""
return index(a, NEG_INFINITY)
def getnan(a):
"""getnan returns a tuple of indices of 'a' where the values are not-a-numbers"""
return _na.nonzero(isnan(a))
def setnan(a, value):
"""setnan sets elements of 'a' which are NANs to 'value' instead.
DEPRECATED: use 'a[getnan(a)] = value' instead.
"""
a[isnan(a)]= value
#def isnan(a):
# """Idenitfies elements of 'a' which are NANs, not a number.
# """
# return _na.isnan(a)
#
# This function has been replaced by isnan macro added to the numarray.ufunc module.
def isfinite(a):
"""Identifies elements of an array which are neither nan nor infinity."""
return _na.logical_not(isinf(a)| isnan(a))
def getbug(a):
"""getbug returns a tuple of indices of 'a' where the values are not classifyable."""
return index(a, BUG)
def test():
import doctest, ieeespecial
return doctest.testmod(ieeespecial)
|