1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
|
"""NumArray Universal Function Module
$Id: ufunc.py,v 1.157 2006/05/12 17:41:01 jaytmiller Exp $
"""
import types
import memory
import _sort, _bytes
from operator import and_
import _ufuncall
import generic as _gen
import _ufunc
import _converter
import numerictypes as _nt
import numarraycore as _nc
import safethread
import warnings as _warnings
# note more imports are at end of file
#import pywin.debugger
"""DEBUGGING NOTE:
A reasonable amount of care went into maintaining the Python
prototype for _callOverDimensions, _UnaryUFunc, _BinaryUFunc,
_Converter, and _Operator. Thus, problems in the C
implementation can sometimes be isolated by substituting the
original Python code back in, either in whole or part.
Substituting in the whole is easy: set _PROTOTYPE to 1 below.
"""
_PROTOTYPE = 0
_FPE_DIVIDE_BY_ZERO = 1
_FPE_OVERFLOW = 2
_FPE_UNDERFLOW = 4
_FPE_INVALID = 8
class _NumErrorMode:
_errorset = ("ignore", "warn", "raise")
def _num_mode_test(self, val, all, default):
if val not in self._errorset and val is not None:
raise ValueError("Error mode value must be in " +
repr(self._errorset) + " or None.")
if all is not None:
if val is not default:
return 1
else:
return 0
else:
return 1
def __init__(self, all=None, overflow="warn", underflow="ignore",
dividebyzero="warn", invalid="warn"):
if all in self._errorset:
self.overflow = all
self.underflow = all
self.dividebyzero = all
self.invalid = all
if self._num_mode_test(overflow, all, "warn"):
self.overflow = overflow
if self._num_mode_test(underflow, all, "ignore"):
self.underflow = underflow
if self._num_mode_test(dividebyzero, all, "warn"):
self.dividebyzero = dividebyzero
if self._num_mode_test(invalid, all, "warn"):
self.invalid = invalid
def __repr__(self):
return ("_NumErrorMode(overflow='%s', underflow='%s', dividebyzero='%s', invalid='%s')" % (self.overflow, self.underflow, self.dividebyzero, self.invalid))
class NumError:
"""Defines how numeric errors should be handled.
Error configuration is managed as a mapping (by thread) of stacks.
Thus it is possible for each thread to have an independent error
configuration, and also for multiple routines within the same
thread to save and restore error configurations as needed.
"""
def __init__(self, all=None,
overflow="warn", underflow="ignore", dividebyzero="warn",
invalid="warn"):
self._modestack = {} # map of stacks indexed by thread id
self._defaultmode = _NumErrorMode()
self.setMode(all=all, underflow=underflow, overflow=overflow,
dividebyzero=dividebyzero, invalid=invalid)
def setDefaultMode(self, all=None, overflow="warn", underflow="ignore",
dividebyzero="warn", invalid="warn"):
self._defaultmode = _NumErrorMode(all, overflow, underflow,
dividebyzero, invalid)
def setMode(self, all=None, overflow="warn", underflow="ignore",
dividebyzero="warn", invalid="warn"):
self._setmodes( _NumErrorMode(all, overflow, underflow,
dividebyzero, invalid) )
def pushMode(self, all=None, overflow="warn", underflow="ignore",
dividebyzero="warn", invalid="warn"):
self._pushmodes( _NumErrorMode(all, overflow, underflow,
dividebyzero, invalid) )
def _getmodestack(self):
id = safethread.get_ident()
try:
l = self._modestack[id]
except KeyError:
l = [ self._defaultmode ]
self._modestack[id] = l
if l == []:
l = [ self._defaultmode ]
return l
def _setmodes(self, modes):
l = self._getmodestack()
l[-1] = modes
def getMode(self):
l = self._getmodestack()
return l[-1]
def _pushmodes(self, modes):
l = self._getmodestack()
l.append(modes)
def popMode(self):
l = self._getmodestack()
return l.pop()
Error = NumError()
class MathDomainError(ArithmeticError): pass
class UnderflowError(ArithmeticError): pass
class NumOverflowError(OverflowError, ArithmeticError): pass
def handleError(errorStatus, sourcemsg):
"""Take error status and use error mode to handle it."""
modes = Error.getMode()
if errorStatus & _FPE_INVALID:
if modes.invalid == "warn":
print "Warning: Encountered invalid numeric result(s)", sourcemsg
if modes.invalid == "raise":
raise MathDomainError(sourcemsg)
if errorStatus & _FPE_DIVIDE_BY_ZERO:
if modes.dividebyzero == "warn":
print "Warning: Encountered divide by zero(s)", sourcemsg
if modes.dividebyzero == "raise":
raise ZeroDivisionError(sourcemsg)
if errorStatus & _FPE_OVERFLOW:
if modes.overflow == "warn":
print "Warning: Encountered overflow(s)", sourcemsg
if modes.overflow == "raise":
raise NumOverflowError(sourcemsg)
if errorStatus & _FPE_UNDERFLOW:
if modes.underflow == "warn":
print "Warning: Encountered underflow(s)", sourcemsg
if modes.underflow == "raise":
raise UnderflowError(sourcemsg)
def _nIOArgs(cfuncs):
"""Determine number of arguments from signature
Returns tuple of number of input and output arguments.
Also check for consistency in numbers of arguments.
"""
# The number of items in the optype key implies the number of inputs,
# hence the number of inputs = # of underscores+1
noptypeinputs = []
ninputs = []
noutputs = []
for key in cfuncs.keys():
if 'R' in key or 'A' in key: # reduce, accumulate
continue
noptypeinputs.append(key.count('_'))
for informkey in cfuncs[key].keys():
ninputs.append(len(informkey))
noutputs.append(len(cfuncs[key][informkey][0]))
return max(ninputs), max(noutputs)
if _PROTOTYPE:
def _getBlockingParameters(shape, niter, overlap=0):
try:
return _blockingParametersCache[ (shape, niter, overlap) ]
except KeyError:
return _getBlockingMiss(shape, niter, overlap)
def _getBlockingMiss(shape, niter, overlap=0):
"""Figure out how to split the input array into subnumarray
close (but less than) the size of the block buffers.
overlap is used in cases where it is necessary to overlap the
last dimension in computations (for example for reduce and
accumulate.)
returns:
level: index at which the c functions should be called
blockingparameters: tuple consisting of
number of full subnumarray at the given level
subarray shape
a flag indicating if there is a leftover part of the array
which is smaller than the regular subarray (leftover)
the shape of the leftover subarray
"""
if shape == ():
retval = 0, (1, (), 0, None)
_blockingParametersCache[(shape,niter,overlap)] = retval
return retval
ndim = len(shape)
csize = long(shape[-1]) # cumulative shape
if csize > niter:
# last dimension is too big for buffer
# special overlap handling in this case
nblocks, leftover = divmod(csize, niter-overlap)
nblocks, leftover = int(nblocks), int(leftover)
if overlap:
if leftover:
retval = ndim-1, (nblocks, (niter,), 1, (leftover,))
else:
retval = ndim-1, (nblocks-1, (niter,), 1, (niter-1,))
else:
if leftover:
retval = ndim-1, (nblocks, (niter,), 1, (leftover,))
else:
retval = ndim-1, (nblocks, (niter,), 0, None)
else:
for i in xrange(2,ndim+1):
csize *= shape[-i]
if csize >= niter:
# need to break up this dimension
tdim = long(shape[-i])
blockdim = niter*tdim/csize
nblocks, leftover = divmod(tdim, blockdim)
nblocks, leftover = int(nblocks), int(leftover)
stail = shape[-i+1:]
if leftover:
retval = ndim-i, (nblocks, (blockdim,)+stail,
1, (leftover,) + stail)
else:
retval = ndim-i, (nblocks, (blockdim,)+stail, 0, None)
break
else:
# don't need to break up
retval = 0, (1, shape, 0, None)
_blockingParametersCache[(shape,niter,overlap)] = retval
return retval
# _doOverDimensions has been re-implemented in C.
def _doOverDimensions(objects, outshape,
dims, indexlevel, blockingparameters, overlap=0, level=0):
"""This version handles alignment, byteswapping and n-dimensions
This is a recursive method dims starts out as an empty list, and
accumulates the indices for each dimension. Eg. if the array has
shape (7, 3, 5) on the initial call, the next level call will
specify the the 'first' index (corresponding to the 7), the next
will have the first two indices (and that would be the last level
since the lowest dimension is taken care of by the cfuncs.)
"""
if level == indexlevel:
nregShapeIters, shape, leftover, leftoverShape, = blockingparameters
if shape != ():
dimval = shape[0]-overlap
for i in xrange(nregShapeIters):
for o in objects:
o.compute(dims+[i*dimval], shape)
if leftover:
for o in objects:
o.compute(dims+[(i+1)*dimval], leftoverShape)
else:
for o in objects:
o.compute([0], shape)
else:
# recurse
for i in xrange(outshape[level]):
_doOverDimensions(objects, outshape,
dims+[i], indexlevel, blockingparameters,
overlap, level+1)
def _callOverDimensions(objects, outshape, index, blocking, overlap=0, level=0):
return _doOverDimensions(objects, outshape, [], index, blocking, overlap, level)
# Replace the Python version of _callOverDimensions with one implemented in C.
# Although _doOverDimensions is not replaced here, it has been re-implemented
# in C as well
if not _PROTOTYPE:
from _ufunc import _callOverDimensions
def _copyFromAndConvertMiss(inarr, outarr):
key = (_digest(inarr), _digest(outarr), safethread.get_ident())
# Type conversion done using inputconverter
input = _InputConverter(inarr, outarr._type.name)
# Ensure output step uses output buffer of input step
output = _OutputConverter(outarr, outarr._type.name,
inbuffer=input.result_buff,
forcestride=1)
maxitemsize = max(inarr._type.bytes, outarr._type.bytes)
niter = _ufunc.getBufferSize()/maxitemsize
if (isinstance(inarr, _nc.NumArray) and
isinstance(outarr, _nc.NumArray)):
_copyCache[ key ] = input, output, niter
return input, output, niter
if _PROTOTYPE:
def _copyFromAndConvert(inarr, outarr):
"""Copy from one array to another handling strides, form & conv"""
if inarr._shape != outarr._shape:
raise ValueError("Arrays must have the same shape")
key = (_digest(inarr), _digest(outarr), safethread.get_ident())
try:
input, output, niter = _copyCache[ key ]
except KeyError:
input, output, niter = _copyFromAndConvertMiss(inarr, outarr)
input.rebuffer(inarr)
output.rebuffer(outarr, input.result_buff)
indexlevel, blockingparameters = \
_ufunc._getBlockingParameters(outarr._shape, niter)
objects = (input, output)
_ufunc.CheckFPErrors()
_callOverDimensions(objects, outarr._shape, indexlevel,
blockingparameters)
errorstatus = _ufunc.CheckFPErrors()
input.clean(inarr)
output.clean(inarr)
output.clean(outarr)
if errorstatus:
handleError(errorstatus, " during type conversion")
else:
from _ufunc import _copyFromAndConvert
def _noConversionNeeded(x, xt):
"""returns 1 iff x is a c_array of type xt."""
if isinstance(x, _nt.scalarTypes):
return True
return x.is_c_array() and (x._type.name == xt or x._type == xt)
def _inputcheck(*inargs):
"""Check input args for type, convert sequences to numnumarray
Return list of 1) input arg tuple with scalars and numnumarray only
2) signature string indicating which args are scalars
and which are numnumarray
3) flag indicating if only scalar arguments are present
"""
retargs = []
retsig = []
scalar = 1
for inarg in inargs:
if isinstance(inarg, _nc.NumArray):
scalar = 0
retsig.append('v')
elif _nc.PyNUMERIC_TYPES.has_key(type(inarg)):
retsig.append('s')
else:
scalar = 0
retsig.append('v')
# see if it can be made into an array
try:
inarg = _nc.array(inarg)
except TypeError:
raise TypeError(
"UFunc arguments must be numarray, scalars or numeric sequences")
retargs.append(inarg)
return retargs, ''.join(retsig), scalar
def _pseudoArrayFromScalars(scalarvalues, type):
"""Wrap a scalar in a buffer so it can be used as an array"""
arr = _bufferPool.getBuffer()
arr._check_overflow = 1
newtype = type # _numtypedict[type]
arr._strides = (newtype.bytes,)
arr._type = newtype
arr._itemsize = newtype.bytes
arr._strides = None
if isinstance(scalarvalues, (list, tuple)):
arr._shape = (len(scalarvalues),)
for i in xrange(len(scalarvalues)):
arr[i] = scalarvalues[i]
else:
arr._shape = ()
arr[()] = scalarvalues
# Modify block buffer attributes to look like vector/vector setup.
return arr
def _normalize_results(inputs, outputs, results, return_rank1=False):
"""normalize_results() does standard return value handling for
a given set of ufunc actual parameters and results. Ufunc inputs
are assumed to be arrays or scalars, ufunc outputs can be arrays
or unspecified, and ufunc "preliminary results" must be arrays.
The standard processing assumptions and rules are summarized as
follows:
1. All ufunc inputs must be specified with *some* value.
2. If any outputs were specified, all outputs must be specified.
If no outputs were specified, outputs is None or (). Specified
outputs are always arrays.
3. If any outputs were specified, the return value is supressed
(is None).
4. If no outputs were specified, at least one array value will be
returned. All results are assumed to have the same shape.
a. If len(results)==1, the tuple is discarded and the return value
is a single array or scalar.
b. If len(results) > 1, the return value is a tuple.
5. If the result array(s) are rank-0, either a scalar, rank-0, or
rank-1 array is returned.
a. If at least 1 input is an array, the result will be an array.
b. If all inputs are scalars, the result(s) is(are) a scalar.
c. If return_rank1 is True, rank-0 results are converted to rank-1-len-1.
6. Arrays of dimension > 0 have no special shape handling.
"""
# catch "void" ufuncs here just in case, also specified outputs => None
if len(results) == 0 or (outputs is not None and outputs is not ()):
return None
if results[0].rank == 0: # scalar, rank-0, or rank-1 results
for i in inputs: # any rank0 input implies rank0 output
if isinstance(i, _nc.NumArray) and i.rank==0:
if return_rank1: # convert rank0 arrays to rank1
for result in results:
result.shape = (1,)
break
else: # all scalar inputs implies scalar outputs
results = list(results)
for i in range(len(results)):
results[i] = results[i][()]
results = tuple(results)
else: # rank >= 1 arrays are returned unaltered
pass
if len(results) == 1:
# len-1 results converts to the result itself
results = results[0]
return results
if not _PROTOTYPE:
from numarray._ufunc import _normalize_results
# Portions of the UFunc classes have been re-implemented in C.
class _UFunc(_ufunc._ufunc):
"""Class to handle all element-by-element mathematical functions
This is the base class -- subclasses must implement __call__ and
(if allowed) the outer and _cumulative methods.
"""
def __init__(self, operator, ufuncs, inputs, outputs, identity):
self._cfuncs = self._organize_cfuncs(ufuncs)
self._coercions = _nt.genericCoercions
self._promotionExclusions = _nt.genericPromotionExclusions
self._typerank = _nt.genericTypeRank
self._cache = {}
def _evaltypes(self, intypes):
return tuple([ eval("_nt." + t) for t in intypes ])
def _sort_typesigs(self, cfuncs):
l = []
for intypes, rest in cfuncs.items(): # input signatures
it = self._evaltypes( intypes )
l.append((it,)+rest)
l.sort() # intype tuples should sort in promotion order!?
return l
def _organize_cfuncs(self, ufuncs):
"""Replace unordered cfunc dictionary with list ordered by
input signature type comparison."""
ufs = {}
for form in ufuncs:
ufs[form] = self._sort_typesigs(ufuncs[form])
return ufs
def _getidentity(self):
return _nc.array([self._identity])
if _PROTOTYPE:
def _cache_flush(self):
# print "flushing cache for", self
self._cache = {}
def __call__(self, *args):
raise NotImplementedError("__call__ is not implemented by base UFunc class")
def __repr__(self):
return "<UFunc: '%s'>" % self.operator
def _scan_sigs(self, types, binTypeList):
"""scan_sigs matches a list of input types against a sorted list of
signature,cfunc tuples.
"""
inplen = len(types)
for bt in binTypeList:
btsig = bt[0]
if inplen != len(btsig): # same parameter count
continue
for i in range(inplen): # find first sig >= types
t = types[i]
if (isinstance(t, _nt.NumericType) and
(t > btsig[i] or
btsig[i].name in self._promotionExclusions[t])):
break
else: # entire sig "fits", first match.
return bt
raise TypeError("Couldn't find a function which matches the inputs")
def _typematch_N(self, types, form):
"""Determine which C function is most appropriate for the given
types. Returns a new form (possibly the all-vector default form),
the input types to be converted to, the output types, and the
c function.
"""
for t in types:
assert isinstance(t, _nt.NumericType) or t in _nt.scalarTypes
assert isinstance(form, str)
try: # Look for an exact match of the current form
form2 = form
binTypeList = self._cfuncs[ form2 ]
except KeyError: # Look for an all "vector" standby
form2 = "v".join(form.split("s"))
binTypeList = self._cfuncs[ form2 ]
try: # Do "binary" ufunc type coercions
intype = _nt.getType(self._coercions[ tuple(types) ])
types1 = (intype,)*len(types)
except KeyError:
types1 = types
try: # Attempt with coerced types...
return (form2,) + self._scan_sigs(types1, binTypeList)
except TypeError: # fail back to non-coerced match
if form == "s"*len(types): # all scalars --> scalars must match
types = [ eval("_nt."+_nt.scalarTypeMap[t]) for t in types ]
return (form2,) + self._scan_sigs(types, binTypeList)
def outer(self, inarr1, inarr2, outarr=None):
raise ValueError("Outer only available for binary functions")
_blockingParametersCache = {}
_copyCache = {}
def flush_caches():
"""flush_cache elminates all ufunc cache entries."""
import sys
global _blockingParametersCache, _copyCache
module = sys.modules[__name__]
for n in module.__dict__.keys():
f = module.__dict__[n]
if isinstance(f, _UFunc):
f._cache_flush()
_blockingParametersCache = {}
_copyCache = {}
class _BufferPool:
"""A Pool of available buffers available for block compuations
Buffers can be gotten. When they are deleted they are automatically
returned to the buffer pool so they can be reused.
"""
def __init__(self, buffersize=100000):
# buffers are initially allocated as needed
self.buffers = []
self.setBufferSize(buffersize)
def getBuffer(self):
try:
return _nc._UBuffer(self.buffers.pop())
except IndexError:
# out of buffers, create a new one
return _nc._UBuffer(memory.new_memory(_ufunc.getBufferSize()))
def getBufferSize(self):
return _ufunc.getBufferSize()
def setBufferSize(self, buffersize):
"""Change buffer size (useful mainly for testing)"""
oldsize = _ufunc.getBufferSize()
if buffersize != oldsize:
_ufunc.setBufferSize(buffersize)
# delete existing (wrong-sized) buffers
flush_caches()
self.buffers = []
return oldsize
_bufferPool = _BufferPool()
def _sequence(x):
return isinstance(x, list) or isinstance(x, tuple)
if _PROTOTYPE:
def _digest(x):
if isinstance(x, _nc.NumArray):
return ("array",
x.iscontiguous(),
x.isaligned(),
x.isbyteswapped(),
x.type())
elif _isScalar(x):
return type(x), x # for demo only
elif x is None:
return None
else:
raise KeyError, "_digest force cache miss"
else:
_digest = _ufunc.digest
def _restuff_pseudo(p, x):
if _isScalar(x):
if p is None:
raise RuntimeError, "scalar value with no pseudo array"
else: # restuff p with x
p[0] = x
return p
else:
if p is not None:
return p
else:
return x
_restuff_pseudo = _ufunc.restuff_pseudo
def _cache(original_input, pseudo_array):
if _isScalar(original_input):
return pseudo_array
else:
return None
def _rank(seq, r=0):
if isinstance(seq, _nc.NumArray):
return r + len(seq._shape)
try:
x = len(seq)
except:
return r
else:
if x == 0:
return r
else:
return _rank(seq[0], r+1)
class _UnaryUFunc(_UFunc):
"""Class for ufuncs with 1 input and 1 output argument"""
if _PROTOTYPE:
def __call__(self, inarr1, outarr=None):
"""The standard calling interface for UFuncs"""
return self._cached_dispatch1(inarr1, outarr)
def _fast_exec1(self, in1, out, cached):
mode, outtype, cfunc, ufargs_junk, inform, cin1 = cached
ufargs = (out.nelements(), 1, 1,
((in1._data, in1._byteoffset),
(out._data, out._byteoffset)))
apply(cfunc, ufargs)
def _slow_exec1(self, in1, out, cached):
mode, outtype, cfunc, ufargs, inform, cin1 = cached
inputs, outputs, maxitemsize = ufargs
niter = _ufunc.getBufferSize()/maxitemsize
indexlevel, blockingparameters = \
_ufunc._getBlockingParameters(out._shape, niter)
operator = _Operator(cfunc,
[inputs[0].rebuffer(in1)],
[outputs[0].rebuffer(out)])
objects = (inputs[0],operator,outputs[0])
_callOverDimensions(objects, out._shape, indexlevel, blockingparameters)
inputs[0].clean(in1)
outputs[0].clean(out)
def _cache_exec1(self, in1, out, cached):
if out.nelements(): # skip 0-element arrays
_ufunc.CheckFPErrors()
if cached[0] == "fast":
self._fast_exec1(in1, out, cached)
else:
self._slow_exec1(in1, out, cached)
error = _ufunc.CheckFPErrors()
if error:
handleError(error, " in "+self.operator)
return out
def _cache_lookup1(self, in1, out):
"""_cache_lookup1 checks the ufunc cache for an entry corresponding to
(in1, in2, out) and returns it if it is found. If the cache misses,
_cache_lookup1 performs a full ufunc setup and returns it. In either
case, vector_vector inputs are dual broadcast to match shapes.
"""
win1 = in1
try:
key = (_digest(win1), _digest(out), safethread.get_ident())
cached = self._cache[ key ]
except KeyError:
return self._cache_miss1(win1, out)
else:
mode, otype, cfunc, ufargs, inform, cin1 = cached
cin1 = _restuff_pseudo(cin1, in1)
if out is None:
if inform == "v":
wout = win1.new(otype)
else: # scalar
wout = _nc.zeros((), type=otype)
else:
if inform == "v":
shape = win1._shape
else: # scalar
shape = ()
if shape != out._shape:
raise ValueError("Supplied output array does not have appropriate shape")
wout = out
return cin1, wout, cached
def _cached_dispatch1(self, inarr, outarr):
params = self._cache_lookup1(inarr, outarr)
result = self._cache_exec1(*params)
return _normalize_results((inarr,),outarr,(result,),False)
def _cache_miss1(self, n1, out):
(in1,), inform, scalar = _inputcheck(n1)
mode, win1, wout, cfunc, ufargs = \
self._setup(in1, inform, out)
cached = mode, wout._type, cfunc, ufargs, inform, _cache(n1, win1)
try:
key = (_digest(n1), _digest(out), safethread.get_ident())
except KeyError:
pass
else:
if _PROTOTYPE:
self._cache[ key ] = cached
else:
self._cache_insert( cached, n1, None, out)
return win1, wout, cached
def _setup(self, inarr, inform, outarr):
"""Setup for unary ufunc"""
if inform == "s": # scalar
t = _nc.array(inarr) # create rank-0
t._check_overflow = 1 # enable overflow checking for t
t[()] = inarr # force any overflow
inarr = t
shape = inarr._shape
fform, convtypes, outtypes, cfunc = self._typematch_N((inarr._type,), inform)
intype = convtypes[0]
if outarr is None:
outarr = inarr.new(_numtypedict[outtypes[0]])
if shape != outarr._shape:
raise ValueError("Supplied output array does not have appropriate shape")
# If fast case, return the arguments for an immediate call to the
# C function
if (_noConversionNeeded(inarr, intype) and
_noConversionNeeded(outarr, outtypes[0])):
return ("fast", inarr, outarr, cfunc, None)
# slower, general case
inputs = (_InputConverter(inarr, intype), )
outputs = (_OutputConverter(arr=outarr, type=outtypes[0]),)
# find largest itemsize involved, it will determine how many
# iterations can be done on the temporary buffers (i.e., niter)
maxitemsize = max(_numtypedict[inarr._type.name].bytes,
_numtypedict[intype].bytes,
_numtypedict[outtypes[0]].bytes,
_numtypedict[outarr._type.name].bytes)
preprocessing_outbuffers = (inputs[0].result_buff,)
postprocessing_inbuffers = (outputs[0].result_buff,)
return ("slow", inarr, outarr, cfunc,
(inputs, outputs, maxitemsize))
def _firstcol(arr):
rval = arr.view()
rval._shape = rval._shape[:-1]
rval._strides = rval._strides[:-1]
return rval
def _moveToLast(dim, iseq):
oseq = []
for i in range(len(iseq)):
if i != dim:
oseq.append(iseq[i])
else:
s = iseq[i]
oseq.append(s)
return oseq
def _fixdim(axis, dim):
"""support the deprecation of the 'dim' keyword in favor of 'axis'"""
if dim is not None:
if axis != 0:
raise RuntimeError("Specify 'axis' or 'dim', but not both. 'dim' is deprecated.")
_warnings.warn("The 'dim' keyword is deprecated. Specify 'axis' instead.",
DeprecationWarning,
stacklevel=3)
return dim
return axis
class _BinaryUFunc(_UFunc):
"""Class for ufuncs with 2 input and 1 output arguments"""
if _PROTOTYPE:
def _fast_exec2(self, in1, in2, out, cached):
mode, outtype, cfunc, ufargs_junk, inform, cin1, cin2 = cached
ufargs = (out.nelements(), 2, 1,
((in1._data, in1._byteoffset),
(in2._data, in2._byteoffset),
(out._data, out._byteoffset)))
apply(cfunc, ufargs)
def _slow_exec2(self, in1, in2, out, cached):
mode, outtype, cfunc, ufargs, inform, cin1, cin2 = cached
inputs, outputs, maxitemsize = ufargs
niter = _ufunc.getBufferSize()/maxitemsize
indexlevel, blockingparameters = \
_ufunc._getBlockingParameters(out._shape, niter)
operator = _Operator(cfunc,[inputs[0].rebuffer(in1),
inputs[1].rebuffer(in2)],
[outputs[0].rebuffer(out)])
objects = inputs + (operator,) + outputs
_callOverDimensions(objects, out._shape, indexlevel,
blockingparameters)
inputs[0].clean(in1)
inputs[1].clean(in2)
outputs[0].clean(out)
def _cache_exec2(self, in1, in2, out, cached):
if out.nelements(): # skip 0-element arrays
_ufunc.CheckFPErrors()
if cached[0] == "fast":
self._fast_exec2(in1, in2, out, cached)
else:
self._slow_exec2(in1, in2, out, cached)
error = _ufunc.CheckFPErrors()
if error:
handleError(error, " in "+self.operator)
return out
def _cache_lookup2(self, in1, in2, out):
"""_cache_lookup2 checks the ufunc cache for an entry corresponding to
(in1, in2, out) and returns it if it is found. If the cache misses,
_cache_lookup2 performs a full ufunc setup and returns it. In either
case, vector_vector inputs are dual broadcast to match shapes.
"""
if (isinstance(in1, _nc.NumArray) and
isinstance(in2, _nc.NumArray)):
win1, win2 = in1._dualbroadcast(in2)
else:
win1, win2 = in1, in2
try:
key = (_digest(win1), _digest(win2), _digest(out), safethread.get_ident())
cached = self._cache[ key ]
except KeyError:
return self._cache_miss2(win1, win2, out)
else:
mode, otype, cfunc, ufargs, inform, cin1, cin2 = cached
cin1 = _restuff_pseudo(cin1, win1)
cin2 = _restuff_pseudo(cin2, win2)
if out is None:
if inform in ["vs", "vv"]: # vector_scalar, vector_vector
wout = win1.new(cached[1])
elif inform == "sv": # scalar_vector
wout = win2.new(cached[1])
else: # scalar_scalar
wout = _nc.zeros((), type=otype)
else:
if inform in ["vs", "vv"]:
shape = win1._shape
elif inform == "sv":
shape = win2._shape
else: # scalar_scalar
shape = ()
if shape != out._shape:
raise ValueError("Supplied output array does not have appropriate shape")
wout = out
return cin1, cin2, wout, cached
def _cached_dispatch2(self, inarr1, inarr2, outarr):
params = self._cache_lookup2(inarr1, inarr2, outarr)
result = self._cache_exec2(*params)
return _normalize_results((inarr1, inarr2), outarr, (result,), False)
def __call__(self, inarr1, inarr2, outarr=None):
"""The standard calling interface for UFuncs"""
return self._cached_dispatch2(inarr1, inarr2, outarr)
def _cache_miss2(self, n1, n2, out):
(in1, in2), inform, scalar = _inputcheck(n1, n2)
mode, win1, win2, wout, cfunc, ufargs = \
self._setup(in1, in2, inform, out)
cached = mode, wout._type, cfunc, ufargs, inform, \
_cache(n1, win1), _cache(n2, win2)
try:
key = (_digest(n1), _digest(n2), _digest(out),
safethread.get_ident())
except KeyError:
pass
else:
if _PROTOTYPE:
self._cache[ key ] = cached
else:
self._cache_insert(cached, n1, n2, out)
return win1, win2, wout, cached
def _setup(self, in1, in2, inform, out):
"""Setup for binary ufunc"""
wout = out
if inform == "ss":
# do it as two 0-d numarray.
in1, in2 = _nc.array(in1), _nc.array(in2)
inform = "vv"
if out is None: wout = in1.copy()
elif inform == "vs":
intypes = (in1._type, type(in2))
fform, convtypes, outtypes, cfunc = self._typematch_N(intypes, inform)
if fform == "vs":
inarr1, inarr2 = in1, _pseudoArrayFromScalars(in2, convtypes[1])
else:
in1, in2 = in1, _nc.array(in2, type=convtypes[1])
inform = "vv"
if out is None: wout = in1.new(outtypes[0])
elif inform == "sv":
intypes = (type(in1), in2._type)
fform, convtypes, outtypes, cfunc = self._typematch_N(intypes, inform)
if fform == "sv":
inarr1, inarr2 = _pseudoArrayFromScalars(in1, convtypes[0]), in2
else:
in1, in2 = _nc.array(in1, type=convtypes[0]), in2
inform = "vv"
if out is None: wout = in2.new(outtypes[0])
if inform == "vv":
intypes = (in1._type, in2._type)
inarr1, inarr2 = in1._dualbroadcast(in2)
fform, convtypes, outtypes, cfunc = self._typematch_N(intypes, inform)
if out is None: wout = inarr1.new(outtypes[0])
#If fast case, return the arguments for an immediate call to the
# C function
if (_noConversionNeeded(inarr1, convtypes[0]) and
_noConversionNeeded(inarr2, convtypes[1]) and
_noConversionNeeded(wout, _numtypedict[outtypes[0]])):
return ("fast", inarr1, inarr2, wout, cfunc, None)
# slower, general case
inputs = (_InputConverter(inarr1, convtypes[0]),
_InputConverter(inarr2, convtypes[1]))
outputs = (_OutputConverter(arr=wout, type=outtypes[0]),)
# find largest itemsize involved, it will determine how many
# iterations can be done on the temporary buffers (i.e., niter)
maxitemsize = max(_numtypedict[inarr1._type.name].bytes,
_numtypedict[inarr2._type.name].bytes,
_numtypedict[convtypes[0]].bytes,
_numtypedict[convtypes[1]].bytes,
_numtypedict[outtypes[0]].bytes,
_numtypedict[wout._type.name].bytes)
return ("slow", inarr1, inarr2, wout, cfunc,
(inputs, outputs, maxitemsize))
def outer(self, inarr1, inarr2, outarr=None):
"""Return outer product of 2 numarray"""
(inarr1, inarr2), inform, scalar = _inputcheck(inarr1, inarr2)
ndim2 = len(inarr2._shape)
indexarg = (slice(None, None, None),)*len(inarr1._shape) + (None,)*ndim2
if outarr is not None:
self(inarr1.__getitem__(indexarg), inarr2, outarr)
else:
return self(inarr1.__getitem__(indexarg), inarr2)
def zreduce(self, array, axis=0, out=None, type=None, dim=None):
"""zreduce returns a rank-0 array as the result of the
reduction of array <= rank-1 array, similar to Numeric.
"""
axis = _fixdim(axis, dim)
in1 = _nc.asarray(array)
r = self._cum_swapped(in1, axis, out, "R", type)
if in1.rank <= 1:
r.shape = ()
r.strides = ()
return r
if _PROTOTYPE:
def accumulate(self, array, axis=0, out=None, type=None, dim=None):
"""accumulate applies the binary operator 'self' at successive
pairs of elements of 'array' along dimension 'dim', storing the
result in 'out'. If no 'out' is provided, the result of the
accumulation will be returned. The result of accumulating
'array' has the same shape as 'array'.
"""
axis = _fixdim(axis, dim)
in1 = _nc.asarray(array)
return self._cum_swapped(in1, axis, out, "A", type)
def areduce(self, array, axis=0, out=None, type=None,
dim=None):
"""areduce applies the operator of ufunc 'self' to reduce
'array' along its 'dim' axis. If no 'out' is provided,
the result of the reduction is returned. The result of
reducing an N-dimensional array is an N-1 dimensional
array. The result of reducing a rank-1 array is *still* a
rank-1 array.
see also 'reduce'.
"""
axis = _fixdim(axis, dim)
in1 = _nc.asarray(array)
return self._cum_swapped(in1, axis, out, "R", type)
def reduce(self, array, axis=0, out=None, type=None, dim=None):
"""areduce applies the operator of ufunc 'self' to reduce
'array' along its 'dim' axis. If no 'out' is provided,
the result of the reduction is returned. The result of
reducing an N-dimensional array is an N-1 dimensional array.
The result of reducing a rank-1 array is a scalar.
see also 'areduce'.
"""
axis = _fixdim(axis, dim)
in1 = _nc.asarray(array)
r = self._cum_swapped(in1, axis, out, "R", type)
if r is not None and in1.rank <= 1:
if r._shape == (1,):
r = r[0]
elif r._shape == ():
r = r[()]
return r
def _cum_cached(self, cumop, in1, out, type):
if (out is not None):
if not isinstance(out, _nc.NumArray):
raise TypeError("output array must be a NumArray")
if (not out.isaligned() or out.isbyteswapped()):
raise ValueError("Reduce/Accumulate: no support for misaligned / byteswapped output numarray")
if cumop not in ["R", "A"]:
raise ValueError("Unknown cumulative option")
if in1.rank == 0:
if out is None:
out = in1.astype(type)
out[()] = in1[()]
return out
params = self._cum_lookup(cumop, in1, out, type)
wout = self._cum_exec(*params)
if cumop == "R":
wout._shape = in1._shape[:-1]
wout._strides = wout._stridesFromShape()
if wout._shape == ():
wout._shape = (1,)
wout._strides = (wout._itemsize,)
if out is None:
return wout
i, o, cached = params
mode, otype, cfunc, ufargs = cached
if out._type != otype:
_copyFromAndConvert(wout, out)
return out
def _cum_lookup(self, cumop, in1, out, type):
try:
key = (_digest(in1), _digest(out), cumop, safethread.get_ident(), type)
cached = self._cache[ key ]
except KeyError: # lists always miss
return self._cum_cache_miss(cumop, in1, out, type)
else:
mode, otype, cfunc, ufargs = cached
if cumop == "R":
wout = self._reduce_out(in1, out, otype)
else:
wout = self._accumulate_out(in1, out, otype)
return in1, wout, cached
def _cum_exec(self, in1, out, cached):
mode, otype, cfunc, ufargs = cached
if otype == _nt.Bool:
if in1._type != _nt.Bool:
in1 = in1.astype(_nt.Bool)
if in1.nelements(): # skip 0-element arrays
_ufunc.CheckFPErrors()
if mode == "fast":
self._cum_fast_exec(in1, out, cached)
else:
self._cum_slow_exec(in1, out, cached)
errorstatus = _ufunc.CheckFPErrors()
if errorstatus:
handleError(errorstatus,
"in cumulative application of " + self.operator)
return out
def _cum_fast_exec(self, in1, out, cached):
mode, otype, cfunc, ufargs = cached
cfunc(in1._shape,
in1._data, in1._byteoffset, in1._strides,
out._data, out._byteoffset, out._strides)
def _cum_slow_exec(self, in1, out, cached):
mode, otype, cfunc, ufargs = cached
input, output, maxitemsize = ufargs
niter = _ufunc.getBufferSize()/maxitemsize
if in1._shape[-1] > niter:
overlap = 1
else:
overlap = 0
indexlevel, blockingparameters = \
_ufunc._getBlockingParameters(in1._shape, niter, overlap)
operator = _Operator(cfunc,
[input.rebuffer(in1)],
[output.rebuffer(out)],
otype.bytes)
objects = (input, operator, output)
_callOverDimensions(objects, out._shape,
indexlevel, blockingparameters, overlap)
input.clean(in1)
output.clean(out)
def _accumulate_out(self, inarr, outarr, outtype):
"""_accumulate_out creates output array for accumulate"""
# Create output array if not supplied.
if outarr is None:
toutarr = inarr.new( outtype )
else:
if outarr._shape != inarr._shape:
raise ValueError(
"Supplied output array does not have the appropriate shape")
toutarr = outarr
# It is necessary to initialize the first subarray of the output
# to the first subarray of the input (C functions depend on it).
# toutarr[...,0] = inarr[...,0]
if inarr.nelements():
_firstcol(toutarr)._copyFrom(_firstcol(inarr))
return toutarr
def _reduce_out(self, inarr, outarr, outtype):
"""_reduce_out creates output array for reduce"""
firstcol = _firstcol(inarr) # inarr[..., 0]
# Create output array if not supplied or wrong type
if outarr is None or outarr._type != outtype:
toutarr = firstcol.new(outtype)
else:
toutarr = outarr
if len(inarr._shape) == 1 and toutarr._shape == (1,):
toutarr._shape, toutarr._strides = (), ()
if firstcol._shape != toutarr._shape:
raise ValueError("output array shape mismatch")
if inarr.nelements(): # skip 0-element arrays
toutarr._copyFrom(firstcol) # Assign first subarray of output
else:
toutarr._copyFrom(self._identity)
toutarr._strides += (0,)
toutarr._shape = inarr._shape
diff = len(toutarr._strides) - len(toutarr._shape)
# if diff > 0:
# toutarr._strides = toutarr._strides[diff:]
return toutarr
def _cum_swapped(self, in1, dim, out, cumop, type=None):
if in1.rank == 0:
return in1.copy()
if dim == in1.rank-1:
dim = -1
if dim != -1:
_in1 = _gen.swapaxes(in1, -1, dim)
_out = _gen.swapaxes(out, -1, dim)
else:
_in1, _out = in1, out
_out1 = self._cum_cached(cumop, _in1, _out, type)
if cumop == "A":
if dim != -1:
_out1.swapaxes(-1, dim) # swap axes to "fix" the result
else:
if dim != -1:
if in1.rank:
_out1._shape = _moveToLast(dim, _out1._shape)
_out1._strides = _moveToLast(dim, _out1._strides)
if out is None:
return _out1
def _cum_cache_miss(self, cumop, in1, out, type):
"""computes the setup values and caches them."""
mode, win1, wout, cfunc, ufargs = \
self._cum_setup(cumop, in1, out, type)
cached = mode, wout._type, cfunc, ufargs
try:
key = (_digest(in1), _digest(out), cumop,
safethread.get_ident(), type)
except KeyError:
pass
else:
if _PROTOTYPE:
self._cache[ key ] = cached
else:
self._cache_insert(cached, in1, None, out, cumop, type);
return win1, wout, cached
'''
try:
intype = _numtypedict[self._typePromoter(win1._type.name, typekeys)]
except TypeError:
assert 0
otype, cfunc = ufdict[(optype,)]
'''
def _cum_setup(self, cumop, in1, out, type=None):
"""Used by both reduce and accumulate to compute accumulations.
Assumes that the dimension of accumulation/reduction is 0.
in1 -- The input array to accumulate/reduce
out -- Optional output array
The output array must have a consistent shape with the input
Array (the same for accumulate and minus the accumulated dimension
for reduce).
The output type must match that produced by default
and cannot be nonaligned or byteswapped. (It is a real mess to
remove this restriction. (The original numeric doesn't even support
output numarray.)
"""
(win1,), inform, scalar = _inputcheck(in1) # win1 substitute for lists
if scalar:
raise ValueError("First argument must be an array or sequence")
# The original numeric returns the operations identity for empty numarray.
sourcemsg = "in %s.%s" % (self.operator, cumop) # For error message
# Get appropriate function, figure out any needed input type conversions
# and what the output type will be
intype = win1._type
if out is None:
if type is None:
optype = intype
else:
optype = _nt.getType(type)
else:
if type is not None:
raise ValueError("Can't specify both 'type' and 'out'")
else:
optype = out.type()
try:
fform, convtypes, otypes, cfunc = self._typematch_N(
(optype,), cumop)
except TypeError: # Hack for logical operators
ufdict = self._cfuncs[cumop]
typekeys = [tupl[0] for tupl in ufdict]
if len(typekeys) == 1 and typekeys[0] == (_nt.Bool,):
return self._cum_setup( cumop, win1.astype('Bool'), out)
else:
raise
otype = _numtypedict[otypes[0]]
if out is None and type is None:
optype = otype
# A few words on shape/stride manipulations:
# The C function assumes the last dimension is being accumulated.
# Create the accumulate/reduce specific output array, tout
# type of reduce tout is always otype to avoid output conversion
# with mismatched shapes.
if cumop == "R":
tout = self._reduce_out(win1, out, otype)
else:
tout = self._accumulate_out(win1, out, otype)
# check for fast case (Unlike Ufuncs, contiguous numarray not required)
if (not win1.isbyteswapped() and win1.isaligned()
and otype == intype
and not tout.isbyteswapped()
and tout.isaligned()):
return "fast", win1, tout, cfunc, None
else:
# slow case
# And now a few words about overlap. It is used to allow the
# accumulate C function to work across blocks. Overlap in effect
# makes the first subarray of the next block the last subarray
# of the previous block (or last array value for 1-d numarray) so
# the accumulate can carry on. The computation of the block size
# must take it into account as does computeOverDimensions in its
# computation of the offsets for the blocks. This is only needed
# where the accumulated dimension is larger than a block. It is
# not needed at all for reduce since the output array contains
# the net accumulation.
# check special case where last dimension is bigger than blocksize
maxitemsize = max(intype.bytes, optype.bytes, otype.bytes)
niter = _ufunc.getBufferSize()/maxitemsize
# This is a bit tricky. If the accumulated dimension is bigger
# than the block size, it is necessary to overlap the block
# computations by one element so that the last value of the
# previous block can continue the count into the next block.
if win1._shape[-1] > niter:
overlap = 1
else:
overlap = 0
indexlevel, blockingparameters = \
_ufunc._getBlockingParameters(win1._shape, niter, overlap)
# The usual compute stuff
input = _InputConverter(win1, type=convtypes[0].name)
# Since cfunc is selected by output type, no type conversion
# is required. Since the cfuncs are striding, no striding
# is required. Byteswapping and aligning are disallowed.
# Thus, the output converter is a NULL converter.
output = _OutputConverter(tout, type=optype.name, nonstriding=1)
return "slow", win1, tout, cfunc, (input, output, maxitemsize)
class _CacheEntry:
def __init__(self, **keys):
self.__dict__.update(keys)
class _NaryUFunc(_UFunc):
"""Class for ufuncs with M input and N output arguments"""
def __init__(self, operator, ufuncs, inputs, outputs, identity=None):
_UFunc.__init__(self, operator, ufuncs, inputs, outputs, identity)
self._cfuncs = self._organize_cfuncs(ufuncs)
self._coercions = _nt.genericCoercions
self._promotionExclusions = _nt.genericPromotionExclusions
self._typerank = _nt.genericTypeRank
self._cache = {}
def _cache_flush(self):
self._cache = {}
def __repr__(self):
return "_NaryUfunc(%s, inputs=%d, outputs=%d)" % \
(self.operator, self.n_inputs, self.n_outputs)
def __call__(self, *args):
"""The standard calling interface for UFuncs"""
if (len(args) < self.n_inputs or
self.n_inputs+self.n_outputs < len(args)):
raise ValueError(
"Ufunc %s takes %d inputs and %d outputs "
"but %d parameters given." %
(self.operator, self.n_inputs, self.n_outputs, len(args)))
if self.n_inputs < len(args) < self.n_inputs + self.n_outputs:
raise ValueError("Ufunc %s takes %d inputs and %d outputs; "
"if any outputs are specified, all outputs "
"must be specified." %
(self.operator, self.n_inputs, self.n_outputs))
inputs = tuple(args[:self.n_inputs])
outputs = tuple(args[self.n_inputs:])
params = self._cache_lookup(inputs, outputs)
results = self._cache_exec(*params)
return _normalize_results(inputs, outputs, results, False)
def _fast_path(self, parameters):
"""_fast_path decides if a set of parameters is suitable for
small array performance optimiation.
The fast path is as follows:
1. Well-behaved NumArray and scalar parameters are supported
2. Broadcast arrays are not supported
3. Misbehaved arrays are not supported
4. Type converted arrays are not supported
"""
shape = None
type = None
for p in parameters:
if isinstance(p, _nc.NumArray):
if shape is None:
shape = p._shape
else:
if p._shape != shape:
return False, None
if type is None:
type = p._type
else:
if type != p._type:
return False, None
if not p.is_c_array():
return False, None
elif not _isScalar(p):
return False, None
else:
if shape is None:
shape = ()
return True, shape
def _cache_lookup(self, inputs, outputs):
"""_cache_lookup checks the ufunc cache for an entry
corresponding to (inputs... outputs...) and returns it if it
is found. If the cache misses, _cache_lookup performs a full
ufunc setup and returns it. In either case, inputs are nWay
broadcast to maintain shape.
"""
fast, shape = self._fast_path(inputs + outputs)
if fast:
try:
key = self._key(inputs, outputs) # some inputs fail to key
cached = self._cache[ key ]
except KeyError:
winputs, woutputs, cached = self._cache_miss(inputs, outputs)
key = self._key(inputs, outputs)
self._cache[ key ] = cached
else:
winputs = self._manage_cached_inputs(cached.cinputs, inputs)
woutputs = self._manage_outputs(
shape, cached.outtypes, outputs)
else:
winputs, woutputs, cached = self._cache_miss(inputs, outputs)
return winputs, woutputs, cached
def _key(self, inputs, outputs):
if outputs is None:
outputs = [ None ]
digests = [ _digest(x) for x in inputs + outputs ]
return tuple([safethread.get_ident()] + digests)
def _manage_cached_inputs(self, cinputs, winputs):
# stuff pseudo buffers with current scalar values
cinputs = list(cinputs)
for i in range(len(winputs)):
cinputs[i] = _restuff_pseudo(cinputs[i], winputs[i])
return tuple(cinputs)
def _manage_outputs(self, shape, outtypes, outputs):
if outputs == (): # create output arrays
woutputs = []
for ot in outtypes:
woutputs.append(_nc.NumArray(shape=shape, type=ot))
else: # check specified output arrays
if len(outputs) != len(outtypes):
raise RuntimeError("Wrong number of output arrays. Either supply no output arrays, or supply all output arrays.")
for out in outputs:
if shape != out._shape:
raise ValueError("Supplied output array does not"
" have appropriate shape")
woutputs = outputs
return tuple(woutputs)
def _cache_miss(self, inputs, outputs):
mode, outtypes, winputs, woutputs, cfunc, ufargs = \
self._setup(inputs, outputs)
cached_inputs = [_cache(inputs[i], winputs[i]) \
for i in range(self.n_inputs)]
cached = _CacheEntry(mode=mode, outtypes=outtypes, cfunc=cfunc,
ufargs=ufargs, cinputs=cached_inputs)
return winputs, woutputs, cached
def _setup(self, inputs, outputs):
"""Setup for nary ufunc"""
inputs, inform, scalar = _inputcheck(*tuple(inputs))
intypes = []
for i in inputs:
if isinstance(i, _nc.NumArray):
intypes.append(i._type)
else:
intypes.append(type(i))
inform1, convtypes, outtypes, cfunc = \
self._typematch_N(intypes, inform)
for i in range(len(inform1)):
if isinstance(inputs[i], _nt.scalarTypes):
if inform1[i] == "s":
inputs[i] = _pseudoArrayFromScalars(
[inputs[i]], type=convtypes[i])
elif inform1[i] == "v":
inputs[i] = _nc.array(inputs[i], type=convtypes[i])
else:
raise RuntimeError("Unexpected array form.")
common_shape = _gen._common_shapes(inputs)
winputs = _gen._broadcast_all(inputs, common_shape)
woutputs = self._manage_outputs(common_shape, outtypes, outputs)
#If fast case, return the arguments for an immediate call to the
# C function
types = convtypes + outtypes
parameters = list(winputs) + list(outputs)
for i in range(len(parameters)):
if not _noConversionNeeded(parameters[i], types[i]):
break
else:
return ("fast", outtypes, winputs, woutputs, cfunc, None)
# slower, general case
input_convs = tuple([ _InputConverter(a, ctype) for a,ctype in
zip(winputs, convtypes) ])
output_convs = tuple([_OutputConverter(a, ctype) for a,ctype in
zip(woutputs, outtypes) ])
# find largest itemsize involved, it will determine how many
# iterations can be done on the temporary buffers (i.e., niter)
types = tuple([ a._type.name for a in winputs + woutputs ]) + \
convtypes + outtypes
maxitemsize = 0
for t in types:
tsize = _numtypedict[t].bytes
if tsize > maxitemsize:
maxitemsize = tsize
return ("slow", outtypes, winputs, woutputs, cfunc,
(input_convs, output_convs, maxitemsize))
def _cache_exec(self, inputs, outputs, cached):
if outputs[0].nelements(): # skip 0-element arrays
_ufunc.CheckFPErrors()
if cached.mode == "fast":
self._fast_exec(inputs, outputs, cached)
else:
self._slow_exec(inputs, outputs, cached)
error = _ufunc.CheckFPErrors()
if error:
handleError(error, " in "+self.operator)
return outputs
def _fast_exec(self, inputs, outputs, cached):
arrays = inputs + outputs
buffers = []
ne = 1
for i in range(self.n_inputs+self.n_outputs):
a = arrays[i]
buffers.append((a._data, a._byteoffset))
ne = max(ne, a.nelements())
ufargs = (ne, self.n_inputs, self.n_outputs,
tuple(buffers))
apply(cached.cfunc, ufargs)
def _slow_exec(self, inputs, outputs, cached):
input_convs, output_convs, maxitemsize = cached.ufargs
niter = _ufunc.getBufferSize()/maxitemsize
indexlevel, blockingparameters = _ufunc._getBlockingParameters(
outputs[0]._shape, niter)
rebuffered_inputs = []
for i in range(self.n_inputs):
rebuffered_inputs.append(input_convs[i].rebuffer(inputs[i]))
rebuffered_outputs = []
for i in range(self.n_outputs):
rebuffered_outputs.append(output_convs[i].rebuffer(outputs[i]))
operator = _Operator(cached.cfunc, rebuffered_inputs,
rebuffered_outputs)
objects = input_convs + (operator,) + output_convs
_callOverDimensions(objects, outputs[0]._shape, indexlevel,
blockingparameters)
for i in range(len(input_convs)):
input_convs[i].clean(inputs[i])
for i in range(len(output_convs)):
output_convs[i].clean(outputs[i])
# Portions of the following class are implemented in C. See _convertermodule.c.
# In particular, compute, stride, convert, and rebuffer.
class _Converter(_converter._converter):
def __init__(self, arr, type, inbuffer=None, forcestride=0, nonstriding=0):
self.stridefunction = None
self.convfunction = None
self.type = type
if arr.isbyteswapped():
if isinstance(arr._type, _nt.ComplexType):
fname = "byteswap" + arr._type.name
else:
fname = "byteswap"+`arr._itemsize`+"bytes"
self.stridefunction = _bytes.functionDict[fname]
elif not arr.isaligned():
fname = "align"+`arr._itemsize`+"bytes"
self.stridefunction = (_bytes.functionDict.get(fname) or
_bytes.functionDict["copyNbytes"])
elif not nonstriding and not arr.iscontiguous() or forcestride:
fname = "copy"+`arr._itemsize`+"bytes"
self.stridefunction = (_bytes.functionDict.get(fname) or
_bytes.functionDict["copyNbytes"])
if type != arr._type.name:
self.convfunction = \
_numtypedict[type]._conv.astype[arr._type.name]
if self.stridefunction:
# Since the output array is iterated over dimensions, even
# the input array, always contiguous, needs strides defined.
# But first see if input buffer is a real array.
if (inbuffer is not None) and inbuffer._strides:
if not inbuffer.is_c_array():
raise ValueError("input buffer is not a c_array")
self.bytestrides = [ inbuffer._strides,
list(arr._strides) ]
self.generated = 0
else:
self.bytestrides = [ _stridesFromShape(arr._shape,
arr._itemsize),
list(arr._strides) ]
self.generated = 1
else:
self.bytestrides = [ None, None ]
# If inbuffer not specified, allocate one
if (inbuffer is None) and (self.stridefunction or self.convfunction):
inbuffer = _bufferPool.getBuffer()
self.conversion_required = 1
if self.convfunction:
if self.stridefunction:
buff = _bufferPool.getBuffer()
buffers = [inbuffer, buff, buff, arr]
self.arr_position = 3
self.inb_position = 0
else:
buffers = [inbuffer, arr, None, None]
self.arr_position = 1
self.inb_position = 0
else:
if self.stridefunction:
buffers = [None, None,inbuffer, arr]
self.arr_position = 3
self.inb_position = 2
else:
if inbuffer is not None:
raise ValueError(
"Specified both input and output but no conversion implied")
buffers = [None, None, None, None]
inbuffer = arr
self.conversion_required = 0
self.buffers = buffers
self.result_buff = inbuffer
def clean(self, arr):
l = self.buffers
for i in range(len(l)):
if l[i] is arr:
l[i] = None
self.buffers = l
if self.result_buff is arr:
self.result_buff = None
if _PROTOTYPE:
# The following method has been re-implemented in C.
def rebuffer(self, arr, inbuffer=None):
if not self.conversion_required:
self.result_buff = arr
return arr
l = self.buffers
l[self.arr_position] = arr
if not self.generated and inbuffer is not None:
self.result_buff = inbuffer
l[self.inb_position] = inbuffer
self.buffers = l
if arr is not None and self.bytestrides != [None, None]:
if self.generated:
ustrides = _stridesFromShape(arr._shape, arr._itemsize)
else:
if inbuffer is not None:
ustrides = inbuffer._strides
else:
ustrides = self.bytestrides[ not self.direction ]
if self.direction:
self.bytestrides = [ ustrides, arr._strides ]
else:
self.bytestrides = [ arr._strides, ustrides ]
return self.result_buff
def convert(self, buf, indices, shape):
"""Perform type conversions."""
if self.convfunction:
niter = _gen.product(shape)
inoffset = self.buffers[buf*2+0]._getByteOffset(indices)
offset = self.buffers[buf*2+1]._getByteOffset(indices)
self.convfunction(niter, 1, 1,
((self.buffers[buf*2+0]._data, inoffset),
(self.buffers[buf*2+1]._data, offset)))
def stride(self, buf, indices, shape):
"""Perform copies and re-alignments."""
if self.stridefunction:
inoffset = self.buffers[buf*2+0]._getByteOffset(indices)
offset = self.buffers[buf*2+1]._getByteOffset(indices)
self.stridefunction(shape,
self.buffers[buf*2+0]._data, inoffset,
self.bytestrides[0][-len(shape):],
self.buffers[buf*2+1]._data, offset,
self.bytestrides[1][-len(shape):])
# The following code has been implemented in C.
# Renaming "compute" below affects compute, stride, and convert.
def compute(self, indices, shape):
""" Perform the necessary transformations on the array.
"""
if self.direction:
self.convert(0, indices, shape)
self.stride(1, indices, shape)
else:
self.stride(0, indices, shape)
self.convert(1, indices, shape)
class _InputConverter(_Converter):
"""This class handles alignment, byteswaping, copying and type conversions
Stride here is a bit of a misnomer, it refers to one of
functions (three currently) that deal with strides. These are:
byteswap, align, copy operations. The conv functions are type conversion
operations. They never deal with strides. At most one of each is
necessary; neither is required. Strides and offsets are *byte*!
"""
def __init__(self, arr, type, inbuffer=None, forcestride=0):
_Converter.__init__(self, arr, type, inbuffer, forcestride)
self.direction = 0 # input
if type != arr._type.name:
self.convfunction = arr._type._conv.astype[type]
l = self.bytestrides
l.reverse()
self.bytestrides = l
l = self.buffers
l.reverse()
self.buffers = l
if self.conversion_required:
self.arr_position = {1:2, 3:0}[self.arr_position]
self.inb_position = {0:3, 2:1}[self.inb_position]
class _OutputConverter(_Converter):
"""This class handles alignment, byteswaping, copying and type
conversions processing the output of a ufunc.
"""
def __init__(self, arr, type, inbuffer=None, forcestride=0, nonstriding=0):
_Converter.__init__(self, arr, type, inbuffer, forcestride,
nonstriding)
self.direction = 1 # output
# The following class has been re-implemented in C. See _operatormodule.c.
class _Operator:
"""performs the operation"""
def __init__(self, cfunction, inputs, outputs, striding=0):
self.cfunction = cfunction
self.inputs = inputs
self.outputs = outputs
self.striding = striding
def _buffer_offset(self, buffer, indices):
if buffer._strides:
return buffer._getByteOffset(indices)
else:
return 0
def _buffer_strides(self, buffer, shape, itemsize):
if buffer._strides:
return buffer._strides
else:
return _stridesFromShape(shape, itemsize)
def compute(self, indices, shape):
if self.striding:
assert len(self.inputs) == 1 and len(self.outputs) == 1
input, output = self.inputs[0], self.outputs[0]
inbuffer, outbuffer = input._data, output._data
inoffset = self._buffer_offset(input, indices)
outoffset = self._buffer_offset(output, indices)
instrides = self._buffer_strides(input, shape, self.striding)
outstrides = self._buffer_strides(output, shape, self.striding)
if len(instrides) < len(outstrides): # hack for reductions
outstrides = outstrides[len(outstrides)-len(instrides):]
self.cfunction(shape, inbuffer, inoffset, instrides,
outbuffer, outoffset, outstrides)
else:
niter = _gen.product(shape)
args = []
for item in self.inputs+self.outputs:
args.append((item._data, self._buffer_offset(item, indices)))
self.cfunction(
niter, len(self.inputs), len(self.outputs), tuple(args))
# Replace the Python version of "_Operator" with a C version.
if not _PROTOTYPE:
from _operator import _operator as _Operator
def _stridesFromShape(shape, bytestride):
"""Compute the strides from shape for a contiguous array, sort of"""
if shape != ():
ndim = len(shape)
strides = [0]*ndim
strides[-1] = bytestride
for i in xrange(ndim-2, -1, -1):
strides[i] = strides[i+1] * shape[i+1]
else:
strides = ()
return strides
def _makeCUFuncDict(functionDict):
"""Organize C functions by function name and signature"""
dict = {}
for keystr in functionDict.keys():
operator, optype, signature = keystr
if not dict.has_key(operator):
dict[operator] = {}
if not dict[operator].has_key(optype):
dict[operator][optype] = {}
dict[operator][optype][signature[0]] = (signature[1],functionDict[keystr])
return dict
def _isScalar(x):
return isinstance(x, _nt.scalarTypes)
def _maxPopType(xs):
"""_maxPopType determines the maximum type of a sequence of
numarray and scalars. see _nt.genericCoercions.
"""
if isinstance(xs[0], types.InstanceType) and \
not isinstance(xs[0], _nc.NumArray):
return None # If they're not all NumArrays, quit now.
maxT = None
for x in xs:
if isinstance(x, _nc.NumArray):
t = x._type
elif _nc.PyNUMERIC_TYPES.has_key(type(x)):
t = type(x)
else:
t = _nc._maxtype(x)
if maxT is None:
maxT = t
else:
maxT = _nt.genericCoercions[(maxT, t)]
return maxT
CLIP = 0 # Peg indices > N-1 at N-1, indices < 0 at 0
WRAP = 1 # Index = Index % N
RAISE = 2 # Raise an exception for out of range indices
class _ChooseUFunc(_UFunc):
"""Class for building the "choose" ufunc.
Class for ufuncs with 2 input (S, [~S...]) and 1 output (S) arguments"""
def _doit(self, computation_mode, outarr, cfunc, ufargs):
_ufunc.CheckFPErrors()
if computation_mode == "fast":
apply(cfunc, ufargs)
else:
inputs, outputs, preprocessing_outbuffers, \
postprocessing_inbuffers, maxitemsize = ufargs
niter = _ufunc.getBufferSize()/maxitemsize
outshape = outarr._shape
indexlevel, blockingparameters = \
_ufunc._getBlockingParameters(outshape, niter)
operator = _Operator(cfunc, preprocessing_outbuffers,
postprocessing_inbuffers)
objects = inputs + (operator,)+ outputs
_callOverDimensions(objects, outshape, indexlevel,
blockingparameters)
errorstatus = _ufunc.CheckFPErrors()
if errorstatus:
handleError(errorstatus, " in "+self.operator)
return outarr
def __call__(self, inarr1, inarr2, outarr=None, clipmode=RAISE):
"""The standard calling interface for UFuncs"""
computation_mode, woutarr, cfunc, ufargs = \
self._setup(inarr1, inarr2, outarr, clipmode)
result = self._doit(computation_mode, woutarr, cfunc, ufargs)
if outarr is not None:
outarr = (outarr,)
return _normalize_results((inarr1,)+tuple(inarr2), outarr,
(result,), False)
def _setup(self, in1, in2, outarr=None, clipmode=RAISE):
"""Setup for choose()"""
in1 = _nc.asarray(in1, type=MaybeLong)
in2 = list(in2)
if outarr is None:
convType = _maxPopType(in2)
else:
convType = outarr._type
for i in range(len(in2)):
if isinstance(in2[i], _gen.NDArray):
pass
else:
in2[i] = _nc.array(in2[i], type=convType)
result = _gen._nWayBroadcast( [in1] + in2 )
in1, in2 = result[0], result[1:]
if outarr is None:
outarr = in1.new(convType)
if in1._shape != outarr._shape:
raise ValueError("Supplied output array does not have appropriate shape")
N = outarr._itemsize
if N in [1,2,4,8,16]:
ucfname = "choose" + `N` + "bytes"
cfunc = _bytes.functionDict[ucfname]
else:
cfunc = _bytes.functionDict["chooseNbytes"]
# pars = clipmode, population count, itemsize
pars = _pseudoArrayFromScalars([clipmode, len(in2),N],
_nt.MaybeLong)
args = [pars, in1] + in2 + [outarr]
fastargs = reduce(and_,
[ _noConversionNeeded(x, convType) for x in in2 + [outarr]])
fastargs = fastargs and _noConversionNeeded(in1, _nt.MaybeLong)
if fastargs:
# If fast case, return the arguments for an immediate call to the
# C function
assert outarr._byteoffset == 0
fastparms = tuple([ (x._data, x._byteoffset) for x in args])
return ("fast", outarr, cfunc,
(outarr.nelements(), len(args)-1, 1, fastparms))
# slower, general case
cpars = _InputConverter(pars, _nt.MaybeLong)
selector = _InputConverter(in1, _nt.MaybeLong)
population = [_InputConverter(x, convType) for x in in2 ]
inputs = (cpars, selector,) + tuple(population)
outputs = (_OutputConverter(arr=outarr, type=convType),)
alltypes = [_numtypedict[convType], _nt.MaybeLong] + \
[a.type() for a in in2]
maxitemsize = max([t.bytes for t in alltypes])
preprocessing_outbuffers = tuple([x.result_buff for x in inputs])
postprocessing_inbuffers = tuple([x.result_buff for x in outputs])
return ("slow", outarr, cfunc,
(inputs, outputs, preprocessing_outbuffers,
postprocessing_inbuffers, maxitemsize))
_choose = _ChooseUFunc("choose", [], 0, 0, None)
def choose(selector, population, outarr=None, clipmode=RAISE):
"""
choose() returns a new array shaped like 'selector' with elements
chosen from members of sequence 'population' by the values of
selector. The shape of each member of 'population' must be
broadcastable to the shape of 'selector'. The value of each
member of 'selector' must satisfy: 0 <= value < len(population).
clipmode=RAISE if clipmode is CLIP, out of range selector values
are clipped at [0, shape[i]).
if clipmode is WRAP, out of range selector values
are wrapped around from 0 to shape[i] (<0) or
from shape[i] to 0 (>= shape[i]).
if clipmode is RAISE, selector values out of range
[0, shape[i]) result in an exception.
"""
return _choose(selector, population, outarr, clipmode)
def _scatteredPseudos( scattered ):
scatteredStrides = _pseudoArrayFromScalars(scattered._strides,
type=MaybeLong)
scatteredShape = _pseudoArrayFromScalars(scattered._shape,
type=MaybeLong)
return scatteredStrides, scatteredShape
class _TakeUFunc(_ChooseUFunc):
"""take(scattered, indexArrays, gathered=None)
scattered: input, array from which elements are "gathered"
indexArrays: input, tuple of index numarray or scalars
gathered: input/output result array
take plucks the elements of 'scattered' specified by the tuple of
index numarray, 'indexArrays', and stores the result in the output array
'gathered'.
'indexArrays' may be partial, i.e. incompletely specified,
hence the shape of 'gathered' is derived from both the shape of
'indexArrays' (primarily) and the shape of the trailing unspecified
dimensions of 'scattered'.
"""
def _setup(self, scattered, indexArrays, gathered=None, clipmode=RAISE):
"""Setup for Nary ufunc
"""
scattered = _nc.asarray(scattered)
indexArrays = list(indexArrays)
gatheredWasSpecified = (gathered is not None)
if gatheredWasSpecified:
ctype = gathered._type
else:
ctype = scattered._type
# *All* of the scattered array must be simultaneously available.
# So blocked conversions won't work.
if not _noConversionNeeded(scattered, ctype):
scattered = scattered.astype(ctype)
impliedShape, N = _gen._takeShape(scattered, indexArrays)
scatteredStrides, scatteredShape = _scatteredPseudos(scattered)
if gatheredWasSpecified:
if gathered._shape != impliedShape:
raise ValueError("Inconsistent array shapes...")
else:
gathered = scattered.__class__(shape=impliedShape,
type=scattered._type)
# scattered and gathered should now be identically typed.
# Since N can be arbitrarily large depending on the trailing
# dimensions of scattered, may have to make gathered contiguous
# to ensure a buffer large enough to store at least N.
# if (N > _ufunc.getBufferSize()
if not _noConversionNeeded(gathered, scattered._type):
raise ValueError("take() destination array must be contiguous, aligned, not byteswapped, and of the same type as the source array")
niter = (gathered.nelements()*gathered._itemsize)/N
cfunc = _bytes.functionDict[self.operator + "Nbytes"]
pars = _pseudoArrayFromScalars([clipmode, N], type=MaybeLong)
# Index arrays must be aligned, not byteswapped, and correctly typed.
# Throw in contiguous for now.
for i in range(len(indexArrays)):
x = indexArrays[i]
if not _noConversionNeeded(x, MaybeLong):
indexArrays[i] = x.astype(MaybeLong)
args = [pars, scattered, scatteredStrides, scatteredShape] + \
indexArrays + [gathered]
fastparms = tuple([ (x._data, x._byteoffset) for x in args])
return ("fast", gathered, cfunc, (niter, len(args)-1, 1, fastparms))
_take = _TakeUFunc("take", [], 0, 0, None)
def take(array, indices, axis=0, outarr=None, clipmode=RAISE):
"""take() picks elements of 'array' specified by sequence of
numerical sequences 'indices'.
parameters which must be specified by keyword:
array data to be indexed & collected (taken from).
indices An integer sequence, or tuple of integer sequences
specifying the array coordinates from which data
is to be taken. Partial indices result in entire
inner blocks being taken.
axis=0 selects the axis (or axes) along which the take
should be performed.
clipmode=RAISE if clipmode is CLIP, out of range indices are clipped
at [0, shape[i]).
if clipmode is WRAP, out of range indices are wrapped
around from 0 to shape[i] (<0) or from shape[i] to
0 (>= shape[i]).
if clipmode is RAISE, indices in the range -N..N-1 are
treated like Python sequence indices. Out of range
indices result in an exception.
"""
if axis == 0:
array = _nc.asarray(array)
return array._take((indices,), outarr=outarr, clipmode=clipmode)
elif isinstance(axis, (int, long)):
if isinstance(indices, (int,long,float)):
raise ValueError("indices must be a sequence")
work = _gen.swapaxes(array, 0, axis)
work = work._take((indices,), outarr=outarr, clipmode=clipmode)
return _gen.swapaxes(work, 0, axis)
else:
def_axes = range(array.rank)
for x in axis:
def_axes.remove(x)
axis = list(axis) + def_axes
work = _gen.transpose(array, axis)
return work._take(indices, outarr=outarr, clipmode=clipmode)
def _nonIteratedArray(a):
ni = a.view()
ni._shape=(0,)
ni._strides = (0,)
ni._contiguous = 1
return ni
class _PutUFunc(_TakeUFunc):
"""put(scattered, indexArrays, gathered) is the inverse function of "take",
and scatters the elements of array 'gathered' across array 'scattered' as
specified by tuple of index numarray, 'indexArrays'.
scattered: input/output Array where "stuff" gets put
indexArrays: input Arrays of indexArrays of scattered where
corresponding pieces of gathered go.
gathered: input Source array
gathered can be an array which is broadcastable to the array shape
implied by scattered and indexArrays -or- gathered can be a scalar.
"""
def _setup(self, scattered, indexArrays, gathered, clipmode=RAISE):
"""Setup for Nary ufunc
"""
indexArrays = list(indexArrays)
if ((len(indexArrays) < len(scattered._shape)) and
(scattered.isbyteswapped() or not scattered.iscontiguous())):
raise ValueError("Invalid destination array: partial indices require contiguous non-byteswapped destination")
impliedShape, N = _gen._takeShape(scattered, indexArrays)
scatteredStrides, scatteredShape = _scatteredPseudos(scattered)
scattered = _nonIteratedArray(scattered)
pars = _pseudoArrayFromScalars([clipmode, N], type=MaybeLong)
gathered = _nc.asarray(gathered, type=scattered._type)
gathered = _gen._broadcast(gathered, impliedShape)
if not gathered.iscontiguous():
gathered = gathered.copy()
# gathered and scattered should now be identically typed.
# gathered need not be contiguous since it is "bufferable".
# Since N can be arbitrarily large depending on the trailing
# dimensions of scattered, may have to pre-process gathered.
# if N > _ufunc.getBufferSize() and \
if not _noConversionNeeded(gathered, scattered._type):
gathered = gathered.astype( scattered._type )
niter = (gathered.nelements()*gathered._itemsize)/N
cfunc = _bytes.functionDict[self.operator + "Nbytes"]
for i in range(len(indexArrays)):
x = indexArrays[i]
if not _noConversionNeeded(x, MaybeLong):
indexArrays[i] = x.astype(MaybeLong)
args = [pars, gathered, scatteredStrides, scatteredShape] + \
indexArrays + [scattered]
fastparms = tuple([ (x._data, x._byteoffset) for x in args])
return ("fast", scattered, cfunc, (niter, len(args)-1, 1, fastparms))
_put = _PutUFunc("put", [], 0, 0, None)
def put(array, indices, values, axis=0, clipmode=RAISE):
"""put(array, indices, values, clipmode=RAISE, axis=0)
stores 'values' into 'array' at 'indices...'.
parameters which must be specified by keyword:
array data to be indexed & stuffed (put to).
indices An integer sequence, or tuple of integer sequences
specifying the array coordinates to hich data
is to be put. Partial indices result in entire
inner blocks being overwritten.
values A sequence of values to be written to the specified
indices of array.
axis=0 selects the axis along which the put should be performed.
clipmode=RAISE if clipmode is CLIP, out of range indices are clipped
at [0, shape[i]).
if clipmode is WRAP, out of range indices are wrapped
around from 0 to shape[i] (<0) or from shape[i] to
0 (>= shape[i])
if clipmode is RAISE, indices in the range -N..N-1 are
treated like Python sequence indices. Out of range
indices result in an exception.
"""
if not isinstance(array, _gen.NDArray):
raise TypeError("put only works on NDArray and its subclasses")
work = _nc.asarray(array)
if not work.is_c_array():
work = work.copy()
if axis == 0:
work._put((indices,), values, clipmode=clipmode)
elif isinstance(axis, (int, long)):
if isinstance(indices, (int,long,float)):
raise ValueError("indices must be a sequence")
work = _gen.swapaxes(work, 0, axis)
work._put((indices,), values, clipmode=clipmode)
work = _gen.swapaxes(work, 0, axis)
else:
def_axes = range(work.rank)
for x in axis:
def_axes.remove(x)
axis = list(axis) + def_axes
work = _gen.transpose(work, axis)
work._put(indices, values, clipmode=clipmode)
work = _gen.transpose(work, axis)
if work is not array:
if isinstance(array, _gen.NDArray):
array._copyFrom(work)
class _NonzeroUFunc:
"""nonzero(array)
array: input, array scanned for non-zero elements
Nonzero scans "array" for nonzero elements, and returns a tuple
of coordinate numarray corresponding to the nonzero elements.
"""
def __call__(self, inarr1):
"""The standard calling interface for UFuncs"""
nz = _nc.asarray(not_equal(inarr1, 0))
if nz.rank < 1:
nz.shape = (1,)
nonzeroCount = add.reduce(_gen.ravel(nz).astype(MaybeLong))
outarr = [ _nc.NumArray(shape=(nonzeroCount,), type=Long)
for i in range(nz.rank) ]
sstrides = _nc.array(nz._strides, type=MaybeLong)
sstrides /= nz._bytestride
niter = nz.nelements()
cfunc = _sort.functionDict[repr(("Bool", "nonzeroCoords"))]
args = [ nz, sstrides] + outarr
fastparms = tuple([ (x._data, x._byteoffset) for x in args])
cfunc(niter, 2, len(args)-2, fastparms)
return tuple(outarr)
def searchsorted(bins, values):
"""searchsort(bins, values) returns the array A[j] of
greatest indices 'i' such that each values[j] <= bins[i].
"""
bins = _nc.asarray(bins)
values = _nc.asarray(values)
if len(bins._shape) > 1 or len(values._shape) > 1:
raise ValueError("Multi-dimensional searchsort not supported.")
outarr = _nc.NumArray(shape=values.shape, type=Long)
maxtype = bins._type
if maxtype < values._type:
maxtype = values._type
if not _noConversionNeeded(bins, maxtype):
bins = bins.astype(maxtype)
if not _noConversionNeeded(values, maxtype):
values = values.astype(maxtype)
cfunc = _sort.functionDict[repr((bins._type.name, 'searchsorted'))]
nbins = _pseudoArrayFromScalars([len(bins)], MaybeLong)
args = [(x._data, x._byteoffset) for x in [nbins, bins, values, outarr]]
cfunc(values.nelements(), 3, 1, tuple(args))
if outarr.rank == 0:
return outarr[()]
else:
return outarr
nonzero = _NonzeroUFunc()
def _sort1(inarr1):
"""1D in-place Sort"""
conversionNeeded = not _noConversionNeeded(inarr1, inarr1._type)
contigarr1 = _nc.array(inarr1, copy=conversionNeeded)
cfunc = _sort.functionDict[repr((contigarr1._type.name, 'sort'))]
cfunc(contigarr1.nelements(), 0, 1,
((contigarr1._data, contigarr1._byteoffset),))
if conversionNeeded:
inarr1._copyFrom(contigarr1)
def _argsort1(inarr1, witness=None):
"""1D ArgSort"""
niter = inarr1.nelements()
inarr1 = _nc.array(inarr1) # make a discardable copy
if witness is None:
witness =_nc.arange(niter,type=Long)
elif not _noConversionNeeded(witness, Long):
raise ValueError("No support for converting the witness array")
cfunc = _sort.functionDict[repr((inarr1._type.name,'asort'))]
cfunc(niter, 0, 2,
tuple([ (x._data, x._byteoffset) for x in [inarr1, witness]]))
return witness
## # =====================================================================
def _fbroadcast(f, N, shape, args, params=()):
"""_fbroadcast(f, N, args, shape, params=()) calls 'f' for each of the
'N'-dimensional inner subnumarray of 'args'. Each subarray has
.shape == 'shape'[-N:]. There are a total of product(shape[:-N])
calls to 'f'.
"""
if len(shape) == N:
apply(f, tuple(args)+params)
else:
for i in range(shape[0]):
_fbroadcast(f, N, shape[1:], [x[i] for x in args], params)
def _sortN(a):
"""_sortN implements N-D in-place sort in terms of 1D sort"""
_fbroadcast(_sort1, 1, a._shape, (a,))
def _argsortN(a, w):
"""_argsortN implements N-D in-place argsort in terms of 1D argsort"""
_fbroadcast(_argsort1, 1, a._shape, (a,w))
#
# Direct sort types
#
def _broadcast_direct_sort(a, name):
"""Helper function to broadcast direct sorts.
Need to finish error handling.
"""
if len(a.shape) == 1 :
cfunc = _sort.functionDict[repr((a._type.name, name))]
if a.is_c_array() :
err = cfunc(a.nelements(), 0, 1, ((a._data, a._byteoffset),))
else :
b = _nc.array(a, copy=1)
err = cfunc(b.nelements(), 0, 1, ((b._data, b._byteoffset),))
a._copyFrom(b)
else :
for i in range(a.getshape()[0]) :
_broadcast_direct_sort(a[i], name)
def _direct_sort(a, name, axis=-1):
"""Sorts an array in-place along the specified axis.
It takes care of the sort axis.
"""
if axis==-1:
_broadcast_direct_sort(a, name)
else:
a.swapaxes(axis,-1)
_broadcast_direct_sort(a, name)
a.swapaxes(axis,-1)
#
# Indirect sort types.
#
def _broadcast_indirect_sort(a, w, name) :
"""Helper function to broadcast indirect sorts.
The witness array 'w' is assumed set in _indirect_sort
It must be of the same shape as a, be of c_type, and
contain longs. It is not checked. Need to finish error
handling.
"""
if len(a.shape) == 1 :
cfunc = _sort.functionDict[repr((a._type.name, name))]
if a.is_c_array() :
err = cfunc(a.nelements(), 1, 1, ((a._data, a._byteoffset), (w._data, w._byteoffset)))
else :
b = _nc.array(a, copy=1)
err = cfunc(a.nelements(), 1, 1, ((b._data, b._byteoffset), (w._data, w._byteoffset)))
a._copyFrom(b)
else :
for i in range(a.getshape()[0]) :
_broadcast_indirect_sort(a[i], w[i], name)
def _indirect_sort(a, name, axis=-1) :
"""Helper function to setup indirect sorts.
It takes care of the sort axis and sets
up the witness array.
"""
if axis == -1 :
ashape = a.getshape()
w = _nc.array(shape=ashape, type=_nt.Long)
w[...,:] = _nc.arange(ashape[-1], type=_nt.Long)
_broadcast_indirect_sort(a, w, 'a' + name)
return w
else :
a.swapaxes(axis,-1)
w = _indirect_sort(a, name, axis=-1)
a.swapaxes(axis,-1)
w.swapaxes(axis,-1)
return w
def divide_remainder(a,b):
"""returns (a/b, a%b)."""
a, b = _nc.asarray(a), _nc.asarray(b)
return (a/b,a%b)
Long = _nt.Long
MaybeLong = _nt.MaybeLong
# module-level variables
_numtypedict = _nt.typeDict
# Short term solution -- identity needs to be defined in _ufuncall module XXX
_identities = {"add":0, "subtract":0, "multiply":1, "divide":1,
"bitwise_and":1, "bitwise_or":0, "bitwise_xor":0,
"logical_and":1, "logical_or":0, "logical_xor":0,
}
def ufuncFactory(operator, cfuncs, identity=None):
"""Create UFunc instance based on signature of functions"""
ninputs, noutputs = _nIOArgs(cfuncs)
if ninputs==1 and noutputs==1:
return _UnaryUFunc(operator, cfuncs, 1, 1, identity)
elif ninputs==2 and noutputs==1:
return _BinaryUFunc(operator, cfuncs, 2, 1, identity)
else:
return _NaryUFunc(operator, cfuncs, ninputs, noutputs, identity)
def make_ufuncs(m):
"""Creates a dictionary of UFunc objects from a C module."""
_cufuncs = _makeCUFuncDict(m.functionDict)
_UFuncs = {}
for operator in _cufuncs.keys():
_UFuncs[operator] = ufuncFactory(operator, _cufuncs[operator],
identity=_identities.get(operator))
return _UFuncs
_UFuncs = make_ufuncs(_ufuncall)
globals().update(_UFuncs)
|