File: _correlatemodule.c

package info (click to toggle)
python-numarray 1.5.2-4
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 8,668 kB
  • ctags: 11,384
  • sloc: ansic: 113,864; python: 22,422; makefile: 197; sh: 11
file content (687 lines) | stat: -rw-r--r-- 18,155 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
#include "Python.h"

#include <stdio.h>
#include <math.h>
#include <signal.h>
#include <ctype.h>

#include "libnumarray.h"

typedef enum
{
	PIX_NEAREST,
	PIX_REFLECT,
	PIX_WRAP,
	PIX_CONSTANT
} PixMode;

typedef struct
{
	PixMode mode;
	long    rows, cols;
	Float64 constval;
	Float64 *data;
} PixData;

static long 
SlowCoord(long x, long maxx, PixMode m)
{
	switch(m) {
	case PIX_NEAREST:
		if (x < 0) x = 0;
		if (x >= maxx) x = maxx-1;
		return x;
	case PIX_REFLECT:
		if (x < 0) x = -x-1;
		if (x >= maxx) x = maxx - (x - maxx) - 1;
		return x;
	case PIX_WRAP:
		if (x < 0) x += maxx;
		if (x >= maxx) x -= maxx;
		return x;
	case PIX_CONSTANT:  /* handled in SlowPix, suppress warnings */
		break;
	}
	return x;
}

static Float64
SlowPix(long r, long c, PixData *p)
{
	long fr, fc;
	if (p->mode == PIX_CONSTANT) {
		if ((r <  0) || (r >= p->rows) || (c < 0) || (c >= p->cols))
			return p->constval;
		else {
			fr = r;
			fc = c;
		}
	} else {
		fr = SlowCoord(r, p->rows, p->mode);
		fc = SlowCoord(c, p->cols, p->mode);
	}
	return p->data[fr*p->cols + fc];
}

static int
_reject_complex(PyObject *a)
{
	NumarrayType t;
	if ((a == Py_None) || (a == NULL)) 
		return 0;
	t = NA_NumarrayType(a);
	if (t < 0) {
		PyErr_Clear();
		return 0;
	}
	if (t == tComplex32 || t == tComplex64) {
		PyErr_Format(PyExc_TypeError,
			     "function doesn't support complex arrays.");
		return 1;
	}
	return 0;
}

static void 
Correlate1d(long ksizex, Float64 *kernel, 
	   long dsizex, Float64 *data, 
	   Float64 *correlated)
{
	long xc;
	long halfk = ksizex/2;

	for(xc=0; xc<halfk; xc++)
		correlated[xc] = data[xc];

	for(xc=halfk; xc<dsizex-halfk; xc++) {
		long xk;
		double temp = 0;
		for (xk=0; xk<ksizex; xk++)
			temp += kernel[xk]*data[xc-halfk+xk];
		correlated[xc] = temp;
	}
		     
	for(xc=dsizex-halfk; xc<dsizex; xc++)
		correlated[xc] = data[xc];
}

static PyObject *
Py_Correlate1d(PyObject *obj, PyObject *args)
{
	PyObject   *okernel, *odata, *ocorrelated=NULL;
	PyArrayObject *kernel, *data, *correlated;

	if (!PyArg_ParseTuple(args, "OO|O:Correlate1d", 
			      &okernel, &odata, &ocorrelated))
		return NULL;

	/* Align, Byteswap, Contiguous, Typeconvert */
	kernel	= NA_InputArray(okernel, tFloat64, C_ARRAY);
	data	= NA_InputArray(odata, tFloat64, C_ARRAY);
	correlated = NA_OptionalOutputArray(ocorrelated, tFloat64, C_ARRAY, 
					    data);

	if (!kernel || !data || !correlated)
		goto _fail;

	if (_reject_complex(okernel) || _reject_complex(odata) || 
	    _reject_complex(ocorrelated))
		goto _fail;

	if ((kernel->nd != 1) || (data->nd != 1)) {
		PyErr_Format(PyExc_ValueError,
			     "Correlate1d: numarray must have exactly 1 dimension.");
		goto _fail;
	}

	if (!NA_ShapeEqual(data, correlated)) {
		PyErr_Format(PyExc_ValueError,
			     "Correlate1d: data and output must have identical length.");
		goto _fail;
	}

	Correlate1d(kernel->dimensions[0], NA_OFFSETDATA(kernel),
		    data->dimensions[0],   NA_OFFSETDATA(data),
		    NA_OFFSETDATA(correlated));

	Py_DECREF(kernel);
	Py_DECREF(data);

	/* Align, Byteswap, Contiguous, Typeconvert */
	return NA_ReturnOutput(ocorrelated, correlated);

  _fail:
	Py_XDECREF(kernel);
	Py_XDECREF(data);
	Py_XDECREF(correlated);
	return NULL;
}

/* SlowCorrelate computes 2D correlation near the boundaries of an array.
The output array shares the same dimensions as the input array, the latter
fully described by PixData.

The region defined by rmin,rmax,cmin,cmax is assumed to contain only valid
coordinates.  However, access to the input array is performed using SlowPix
because pixels reachable via "kernel offsets" may be at invalid coordinates.
*/
static void 
SlowCorrelate2d(long rmin, long rmax, long cmin, long cmax, 
	      long krows, long kcols, Float64 *kernel, 
	      PixData *pix, Float64 *output)
{
	long kr, kc, r, c;
	long halfkrows = krows/2;
	long halfkcols = kcols/2;

	for(r=rmin; r<rmax; r++) { 
		for(c=cmin; c<cmax; c++) {
			Float64 temp = 0;
			for(kr=0; kr<krows; kr++) {
				long pr = r + kr - halfkrows;
				for(kc=0; kc<kcols; kc++) {
					long pc = c + kc - halfkcols;
					temp += SlowPix(pr, pc, pix) * 
						kernel[kr*kcols+kc];
				}
			}
			output[r*pix->cols+c] = temp;
		}
	}
}

static void 
Correlate2d(long krows, long kcols, Float64 *kernel, 
	    long drows, long dcols, Float64 *data, Float64 *correlated, 
	    PixMode mode, Float64 cval)
{
	long ki, kj, di, dj;
	long halfkrows = krows/2;
	long halfkcols = kcols/2;

	PixData pix;
	pix.mode = mode;
	pix.data = data;
	pix.constval = cval;
	pix.rows = drows;
	pix.cols = dcols;

	/* Compute the boundaries using SlowPix */

	SlowCorrelate2d(0, halfkrows, 0, dcols, 
		      krows, kcols, kernel, &pix, correlated); /* top */
	SlowCorrelate2d(drows-halfkrows, drows, 0, dcols, 
		      krows, kcols, kernel, &pix, correlated); /* bottom */
	SlowCorrelate2d(halfkrows, drows-halfkrows, 0, halfkcols, 
		      krows, kcols, kernel, &pix, correlated); /* left */
	SlowCorrelate2d(halfkrows, drows-halfkrows, dcols-halfkcols, dcols,
		      krows, kcols, kernel, &pix, correlated); /* right */
	
	/* Correlate the center data using unchecked array access */
	for(di=halfkrows; di<drows-halfkrows; di++) {
		for(dj=halfkcols; dj<dcols-halfkcols; dj++) {
			Float64 temp = 0;
			for(ki=0; ki<krows; ki++) {
				long pi = di + ki - halfkrows;
				for(kj=0; kj<kcols; kj++) {
					long pj = dj + kj - halfkcols;
					temp += data[pi*dcols+pj] * 
						kernel[ki*kcols+kj];
				}
			}
			correlated[di*dcols+dj] = temp;
		}
	}
}

static PyObject *
Py_Correlate2d(PyObject *obj, PyObject *args, PyObject *kw)
{
	PyObject      *okernel, *odata, *ocorrelated=NULL;
	PyArrayObject *kernel,  *data,  *correlated;
	Float64  cval = 0;
	int      mode = PIX_NEAREST;
	char       *keywds[] = { "kernel", "data", "output", "mode", "cval", NULL };

	if (!PyArg_ParseTupleAndKeywords(
		    args, kw, "OO|Oid:Correlate2d", keywds, 
		    &okernel, &odata, &ocorrelated, &mode, &cval))
		return NULL;

	if ((mode < PIX_NEAREST) || (mode > PIX_CONSTANT))
		return PyErr_Format(PyExc_ValueError,
			    "Correlate2d: mode value not in range(%d,%d)", 
				    PIX_NEAREST, PIX_CONSTANT);

	/* Align, Byteswap, Contiguous, Typeconvert */
	kernel	= NA_InputArray(okernel, tFloat64, C_ARRAY);
	data	= NA_InputArray(odata, tFloat64, C_ARRAY);
	correlated = NA_OptionalOutputArray(ocorrelated, tFloat64, C_ARRAY, 
					    data);

	if (!kernel || !data || !correlated)
		goto _fail;

	if ((kernel->nd != 2) || (data->nd != 2) || (correlated->nd != 2)) {
		PyErr_Format(PyExc_ValueError, "Correlate2d: inputs must have 2 dimensions.");
		goto _fail;
	}

	if (!NA_ShapeEqual(data, correlated)) {
		PyErr_Format(PyExc_ValueError,
			     "Correlate2d: data and output numarray need identical shapes.");
		goto _fail;
	}	

	if (_reject_complex(okernel) || _reject_complex(odata) || 
	    _reject_complex(ocorrelated))
		goto _fail;

	Correlate2d(kernel->dimensions[0], kernel->dimensions[1], 
		    NA_OFFSETDATA(kernel),
		    data->dimensions[0], data->dimensions[1], 
		    NA_OFFSETDATA(data),
		    NA_OFFSETDATA(correlated), 
		    mode, cval);

	Py_DECREF(kernel);
	Py_DECREF(data);

	/* Align, Byteswap, Contiguous, Typeconvert */
	return NA_ReturnOutput(ocorrelated, correlated);

  _fail:
	Py_XDECREF(kernel);
	Py_XDECREF(data);
	Py_XDECREF(correlated);
	return NULL;
}

void Shift2d( long rows, long cols, Float64 *data, long dx, long dy, Float64 *output, int mode, Float64 cval)
{
	long r, c;
	PixData pix;
	pix.mode = mode;
	pix.constval = cval;
	pix.rows = rows;
	pix.cols = cols;
	pix.data = data;

	for(r=0; r<rows; r++)
		for(c=0; c<cols; c++)
			output[ r*cols + c] = SlowPix(r+dy, c+dx, &pix);
}

static PyObject *
Py_Shift2d(PyObject *obj, PyObject *args, PyObject *kw)
{
	PyObject      *odata, *ooutput=NULL;
	PyArrayObject *data,  *output;
	int           dx, dy;
	Float64       cval = 0;
	int           mode = PIX_NEAREST;
	char          *keywds[] = { "data", "dx", "dy", 
				    "output", "mode", "cval", NULL };

	if (!PyArg_ParseTupleAndKeywords(args, kw, "Oii|Oid:Shift2d", keywds,
			 &odata, &dx, &dy, &ooutput, &mode, &cval))
		return NULL;

	if ((mode < PIX_NEAREST) || (mode > PIX_CONSTANT))
		return PyErr_Format(PyExc_ValueError,
			    "Shift2d: mode value not in range(%d,%d)", 
				    PIX_NEAREST, PIX_CONSTANT);

	/* Align, Byteswap, Contiguous, Typeconvert */
	data	= NA_InputArray(odata, tFloat64, C_ARRAY);
	output  = NA_OptionalOutputArray(ooutput, tFloat64, C_ARRAY, 
					 data);

	if (!data || !output)
		goto _fail;

	if (_reject_complex(odata) || _reject_complex(ooutput))
		goto _fail;

	if ((data->nd != 2)) {
		PyErr_Format(PyExc_ValueError,
			     "Shift2d: numarray must have 2 dimensions.");
		goto _fail;
	}

	if (!NA_ShapeEqual(data, output)) {
		PyErr_Format(PyExc_ValueError,
			     "Shift2d: data and output numarray need identical shapes.");
		goto _fail;
	}

	/* Invert sign of deltas to match sense of 2x2 correlation. */
	Shift2d( data->dimensions[0], data->dimensions[1], NA_OFFSETDATA(data),
		 -dx, -dy, NA_OFFSETDATA(output), mode, cval);
	
	Py_XDECREF(data);

	/* Align, Byteswap, Contiguous, Typeconvert */
	return NA_ReturnOutput(ooutput, output);
  _fail:
	Py_XDECREF(data);
	Py_XDECREF(output);
	return NULL;
}

typedef struct s_BoxData BoxData;

typedef Float64 (*SumColFunc)(long,long,BoxData*);
typedef Float64 (*SumBoxFunc)(long,long,BoxData*);

struct s_BoxData {
	PixData    pix;
	long       krows, kcols;
	SumColFunc sumcol;
	SumBoxFunc sumbox;
};

static Float64
SlowSumCol(long r, long c, BoxData *D) 
{
	Float64 sum = 0;
	long i, krows = D->krows;
	for(i=0; i<krows; i++) {
		sum += SlowPix(r+i, c, &D->pix);
	}
	return sum;
}

static Float64
SlowSumBox(long r, long c, BoxData *D)
{
	long i, j;
	Float64 sum = 0;
	for(i=0; i<D->krows; i++)
		for(j=0; j<D->kcols; j++)
			sum += SlowPix(r+i, c+j, &D->pix);
	return sum;
}

static Float64
FastSumCol(long r, long c, BoxData *D) 
{
	Float64 sum = 0;
	long krows = D->krows;
	long cols = D->pix.cols;
	Float64 *data = D->pix.data;

	data += r*cols + c;
	for(; krows--; data += cols) {
		sum += *data;
	}
	return sum;
}

static Float64
FastSumBox(long r, long c, BoxData *D)
{
	long i, j;
	Float64 sum = 0;
	long cols = D->pix.cols;
	Float64 *data = D->pix.data;
	data += r*cols + c;
	for(i=0; i<D->krows; i++, data += cols-D->kcols)
		for(j=0; j<D->kcols; j++, data++)
			sum += *data;
	return sum;
}

static long bound(long x, long max)
{
	if (x < 0) return 0;
	else if (x > max) return max;
	else return x;
}

static void
BoxFunc(long rmin, long rmax, long cmin, long cmax, Float64 *output, BoxData *D)
{
	long r, c;
	long    krows2    = D->krows/2;
	long    kcols2    = D->kcols/2;
	long    kcolseven = !(D->kcols & 1);
	long    rows      = D->pix.rows;
	long    cols      = D->pix.cols;

	rmin = bound(rmin, rows);
	rmax = bound(rmax, rows);
	cmin = bound(cmin, cols);
	cmax = bound(cmax, cols);

	for(r=rmin; r<rmax; r++) {  
		Float64 sum = D->sumbox(r - krows2, cmin - kcols2, D);
		for(c=cmin; c<cmax; c++) {
			output[r*cols + c] = sum;
			sum -= D->sumcol(r - krows2, c - kcols2, D);
			sum += D->sumcol(r - krows2, c + kcols2 - kcolseven + 1, D);
		}
	}
}

/*  BoxFuncI computes a boxcar incrementally, using a formula independent of
    the size of the boxcar.  Each incremental step is based on dropping a
    whole column of the "back" of the boxcar, and adding in a new column in
    the "front".  The sums of these columns are further optimized by realizing
    they can be computed from their counterparts one element above by adding in
    bottom corners and subtracting out top corners.

    incremental pixel layout:      B  C     where S is the unknown, and A, B, C are known neighbors
                                   A  S           each of these refers to the output array

    S = A + a1 - a0            where a0 and a1 are column vectors with *bottom* elements { a, d }
    C - B = b1 - b0            where b0 and b1 are column vectors with *top* elements { b, g }
                                    column vectors and corner elements refer to the input array

    offset matrix layout:	   b      g                   where b is actually in b0
				  [b0]   [b1]                       g    "           b1
                                  [a0] S [a1]                       a    "           a0
				   a      d                         d is actually in a1
 
    a0 = b0 - b + a            column vector a0 is b0 dropping top element b and adding bottom a
    a1 = b1 - g + d            column vector a1 is b1 dropping top element g and adding bottom d

    S = A + (b1 - g + f) - (b0 - b + a)    by substitution
    S = A + (b1 - b0) - g + d + b - a      rearranging additions
    S = A + C - B - g + d + b - a          by substitution
*/
static void
BoxFuncI(long rmin, long rmax, long cmin, long cmax, Float64 *output, BoxData *D)
{
	long r, c;
	long krows2    = D->krows/2;
	long kcols2    = D->kcols/2;
	long krowseven = !(D->krows & 1);
	long kcolseven = !(D->kcols & 1);
	long rows      = D->pix.rows;
	long cols      = D->pix.cols;
	Float64 *input = D->pix.data;

	rmin = bound(rmin, rows);
	rmax = bound(rmax, rows);
	cmin = bound(cmin, cols);
	cmax = bound(cmax, cols);

	for(r=rmin; r<rmax; r++) {  
		long top    = r - krows2 - 1;
		long bottom = r + krows2 - krowseven;

		for(c=cmin; c<cmax; c++) {
			long left   = c - kcols2 - 1;
			long right  = c + kcols2 - kcolseven;

			Float64 A = output [     r  * cols + (c-1) ];
			Float64 B = output [  (r-1) * cols + (c-1) ];
			Float64 C = output [  (r-1) * cols + c     ];
			Float64 a = input  [ bottom * cols + left  ];
			Float64 b = input  [    top * cols + left  ];
			Float64 g = input  [    top * cols + right ];
			Float64 d = input  [ bottom * cols + right ];

			output[r*cols + c] = A + C - B - g + d + b - a;
		}
	}
}

static void 
Boxcar2d(long krows, long kcols, long rows, long cols, Float64 *data, 
	 Float64 *output, PixMode mode, Float64 constval)
{
	long krows2 = krows/2;
	long krowseven = !(krows&1);
	long kcols2 = kcols/2;
	long kcolseven = !(kcols&1);
	long r, c;
	Float64 karea;

	BoxData D;
	D.pix.mode = mode;
	D.pix.constval = constval;
	D.pix.rows = rows;
	D.pix.cols = cols;
	D.pix.data = data;
	D.krows = krows;
	D.kcols = kcols;
	D.sumcol = SlowSumCol;
	D.sumbox = SlowSumBox;
	
	/* The next 4 calls compute boxcars on the boundary pixels with
	   different modes detemining what data values are fetched when "out
	   of bounds".  Presumably, this is a small minority of the data and
	   therefore the implementation inefficiency is not *too* damaging.
	   It should at least beat making 2 outsized copies of the data array. */

	/* top whole plus one */
	BoxFunc(0, krows2+2, 0, cols, output, &D);
	
	/* bottom whole */
	BoxFunc(rows-krows2+krowseven, rows, 0, cols, output, &D);
	
	/* left whole plus one */
	BoxFunc(0, rows, 0, kcols2+2, output, &D);
	
	/* right whole */
	BoxFunc(0, rows, cols-kcols2+kcolseven, cols, output, &D);

	/* Do the boxcar on the "center" data, the data where the boxcar is
	   always "in bounds".  Presumably, this is the bulk of the data so
	   this should be fast.  
	*/
	D.sumcol = FastSumCol;
	D.sumbox = FastSumBox;

	BoxFuncI( krows2+2, rows-krows2+krowseven, 
		  kcols2+2, cols-kcols2+kcolseven, 
		  output, &D);

	karea = kcols * krows;
	for(r=0; r<rows; r++)
		for(c=0; c<cols; c++)
			output[r*cols + c] /= karea;
}

static PyObject *
Py_Boxcar2d(PyObject *obj, PyObject *args, PyObject *kw)
{
	PyObject   *odata, *ooutput=NULL;
	PyArrayObject *data, *output;
	int        krows, kcols, mode=PIX_NEAREST;
	Float64    cval = 0;
	char       *keywds[] = { "data", "krows", "kcols", 
				 "output", "mode", "cval", NULL };

	if (!PyArg_ParseTupleAndKeywords(args, kw, "Oii|Oid:Boxcar2d", keywds, 
			 &odata, &krows, &kcols, &ooutput, &mode, &cval))
		return NULL;

	/* Align, Byteswap, Contiguous, Typeconvert */
	data	= NA_InputArray(odata, tFloat64, C_ARRAY);
	output = NA_OptionalOutputArray(ooutput, tFloat64, C_ARRAY, data);
	if (!data || !output)
		goto _fail;

	if (_reject_complex(odata) || _reject_complex(ooutput))
		goto _fail;

	if ((krows < 0) || (kcols < 0)) {
		PyErr_Format(PyExc_ValueError, "krows and kcols must be > 0.");
		goto _fail;
	}

	if ((mode < PIX_NEAREST) || (mode > PIX_CONSTANT)) {
		PyErr_Format(PyExc_ValueError,
			     "Boxcar2d: mode value not in range(%d,%d)", 
			     PIX_NEAREST, PIX_CONSTANT);
		goto _fail;
	}

	if ((data->nd != 2)|| (output->nd != 2)) {
		PyErr_Format(PyExc_ValueError,
			     "Boxcar2d: numarray must have 2 dimensions.");
		goto _fail;
	}

	if (!NA_ShapeEqual(data, output)) {
		PyErr_Format(PyExc_ValueError,
			     "Boxcar2d: data and output numarray need identical shapes.");
		goto _fail;
	}

	if ((kcols <=0) || (krows <= 0)) {
		PyErr_Format(PyExc_ValueError,
			     "Boxcar2d: invalid data shape.");
		goto _fail;
	}
	if ((kcols > data->dimensions[1]) || (krows > data->dimensions[0])) {
		PyErr_Format(PyExc_ValueError, "Boxcar2d: boxcar shape incompatible with"
			     " data shape.");
		goto _fail;
	}

	Boxcar2d(krows, kcols, data->dimensions[0], data->dimensions[1], 
		 NA_OFFSETDATA(data), NA_OFFSETDATA(output), mode, cval);

	Py_XDECREF(data);

	/* Align, Byteswap, Contiguous, Typeconvert */
	return NA_ReturnOutput(ooutput, output);
  _fail:
	Py_XDECREF(data);
	Py_XDECREF(output);
	return NULL;
}

static PyMethodDef _correlateMethods[] = {
    {"Correlate1d", Py_Correlate1d, METH_VARARGS}, 
    {"Correlate2d", (PyCFunction) Py_Correlate2d, METH_VARARGS | METH_KEYWORDS},
    {"Shift2d", (PyCFunction) Py_Shift2d, METH_VARARGS | METH_KEYWORDS, 
     "Shift2d shifts and image by an integer number of pixels, and uses IRAF compatible modes for the boundary pixels."},
    {"Boxcar2d", (PyCFunction) Py_Boxcar2d, METH_VARARGS | METH_KEYWORDS,
    "Boxcar2d computes a sliding 2D boxcar average on a 2D array"},
    {NULL, NULL} /* Sentinel */
};

/* platform independent*/
#ifdef MS_WIN32
__declspec(dllexport)
#endif

void init_correlate(void)
{
	PyObject *m, *d;
	m = Py_InitModule("_correlate", _correlateMethods);
	d = PyModule_GetDict(m);
	import_libnumarray();
}

/*
 * Local Variables:
 * mode: C
 * c-file-style: "python"
 * End:
 */